ADO Workshop
December 12 and 13, 2017

Thermochemical Conversion
Liz Moore
ADO Technology Manager
Breakout Session Topics:

Breakout #1
- Feedstock Supply & Logistics (Including algae)

Breakout #2
- Deconstruction and Fractionation
 - Hydrolysis
 - Pretreatment
 - Pyrolysis
 - Preprocessing
 - Gasification
 - Hydrothermal Liquefaction

Breakout #3
- Synthesis and Upgrading
 - Intermediate Upgrading
 - Fuel/Product Finishing
 - Intermediate Processing at Petroleum Refineries
 - Fuel and Product Distribution Infrastructure and End Use

Separations, Integration, and Enabling Technologies

Non-Technical/OSBL/Market Related
High Temperature Conversion
Feedstock Logistics High Priority Challenges

- Feedstock characterization/specification/preprocessing
 - What specifications exist?
 - How to measure real-time?
- Crossing high temperature/pressure thresholds
 - Lock hoppers, augers, etc...
 - Formatted feedstocks
- Verifying RIN/RFS compatibility
 - Using blended feedstocks
 - Technical and regulatory concerns
- Durable materials of construction
 - Balance CapEx vs. OpEx

-
Example Feedstock Logistics Flow Diagram:

- Standing Trees
 - Ash: 2%
 - MC: 60%
 - Felling

- Piled Trees
 - Ash: 2%
 - MC: 60%
 - Field Drying

- Dried Trees
 - Ash: 2%
 - MA: 40%
 - Yarding

- Chips
 - Ash: <1%
 - MC: 40%
 - P8: 2"
 - Chipper

- Debarked Trees
 - Ash: <1%
 - MC: 40%
 - Deliming and Debarking

- Loader

- Unload/Handling/Duct Collection

- Plant Gate
 - Loader
 - Electromagnetic
 - Queued Chips
 - Ash: <1%
 - MC: 40%
 - P8: 2"
 - Queuing

- BioRefinery
 - Termochemical Conversion Pyrolysis
 - Low Pressure Feedsystem
 - Even Flow
 - Milled Wood
 - Ash: <1%
 - MC: 10%
 - P8: <2%
 - Hammermilling
 - Dried Chips
 - Ash: <1%
 - MC: 10%
 - P8: 2"
 - Dryer

Feedstock Supply System Design and Analysis
Back to Basics:

- What is the underlying unknown with each challenge?
- Do we know what the key parameters are?
- Can we measure them?
- What correlations may exist?
- What can we control?
- Are the solutions industrially relevant?

High Temperature Conversion
Deconstruction & Fractionation Challenges

- Continuous ash, char, and tar removal at system conditions
- Intermediate characterization, clean-up, and stabilization
- Durable materials of construction
- Separations (all phases)
- Catalytic deconstruction
- Heat transfer

[Diagram of processes involving arrows and blocks]
Example Pyrolysis & Stabilization Flow Diagram:

Deconstruction

Stabilization

Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels
Thermochemical Research Pathways with In Situ and Ex Situ Upgrading of Fast Pyrolysis Vapors
https://www.nrel.gov/docs/fy15osti/62455.pdf
Example Gasification & Clean-up Flow Diagram:

Gasification

Tar Reforming (Clean-up, Compression)

Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

https://www.nrel.gov/docs/fy07osti/41168.pdf
Back to Basics:

- What is the underlying unknown with each challenge?
- Do we know what the key parameters are?
- Can we measure them?
- What correlations may exist?
- What can we control?
High Temperature Conversion
Synthesis & Upgrading Challenges

- Hydrogen efficiency & availability
- Product certification
- Durable materials of construction
- Distributed processing
- Catalyst selectivity & availability
Example Hydrotreating & Fuels Synthesis Flow Diagrams:

Hydrotreating

Alcohol Synthesis (also, ATJ, other)
Back to Basics:

- What is the underlying unknown with each challenge?
- Do we know what the key parameters are?
- Can we measure them?
- What correlations may exist?
- What can we control?