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Centralized Feedstocks

Emerging Distributed Feedstocks
e.g. biogas, syngas, biosolids,
food waste, CO, streams
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Process/Reactor Needs for Emerging
Feedstocks:

« Efficient at small scales
* e.g. modular reactors: surface area
dependent (gas phase reactants, electron
transfer)

 Low Capital Investment
* Mild operating conditions, high process
intensity, reduced downstream processing
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Technical Innovations for Bioprocess
Intensification:

* Higher Intensity: Minimize volume/carbon
devoted to metabolism (Cell-free)

* Higher Stability: More Process Flexibility

« Advanced Materials to Enhance Cell-Free
Processes and Mass Transfer
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“3rd Wave” of Biocatalysis: Smaller,
Smarter Libraries, Rational Design

Quality
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Example: Directed Evolution of Carbonic
Anhydrase

Scrubbed Pure CO
Flue Gas Stream2
Iﬂ F,,,.} | 4
! Heat
SIS Exchanger

Flue Gas

25°C 87 -100°C

Oscar Alvizo et al. PNAS 2014;111:16436-16441

The Stability of Carbonic Anhydrase was Improved ~5 Million Fold
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Biology uses materials to make enzymes
work better:

I Biology’s Design Biological
Strategies Structures

’2 | Enzyme-substrate
co-localization

.

Cellular compart- v
ments with selective ‘\
membrane barriers

Positioning
enzymes at
interfaces
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Embedding Enzymes in Functional Materials
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We can now mimic biology’s design
strategies using advanced manufacturing

Biology’s Design Biological Proposed Artificial Proposed Synthetic Function

Strategies Structures Design Strategies Architectures of Architectures

Enzyme-substrate Functional copolymer Increase substrate

co-localization network structures concentration to increase
. catalytic rates
Cellular compart- No . Permeable polymer Protect enzymes from

competing reactions and
prevent cofactor diffusion

microcapsules embed-
ded in bulk materials

ments with selective
membrane barriers

Positioning Printing of enzyme-
enzymes at embedded material

interfaces gradients

Enable most efficient use
of enzymes
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How Can Materials Meet the Potential of
Engineered Enzymes?

I1St Gen: immobilization Enzyme re-use gﬁﬁ

Adsorption, crosslinking

2nd Gen: stabilization Re-use + extended lifetime/ étﬁu £ ﬁb%
Organic solvents éﬁﬁﬁ A

Encapsulation (sol gel, mesoporous)

3rd Gen: directed Synergy with Materials:
assembly
Enhanced Mass Transfer

Permeable compartments

Enhanced Electron Transfer

Enzyme embedded materials with
tunable architectures

Lawrence Livermore National Laboratory e
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Mass Transfer Example: Cell-Free methane
conversion

Efficient GTL process for small and remote methane
streams Needed: Suggests Biological Process

*Fei, Q., et. al., 2014. Bioconversion of natural gas to liquid fuel: Opportunities and challenges. Biotechnology Advances 32, 596-614. 1.; Haynes, C. A. &
Gonzalez, R. Rethinking biological activation of methane and conversion to liquid fuels. Nature Chemical Biology 10, 331-339 (2014).
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The stirred-tank reactor is slow and inefficient
for gas phase reactants (e.g. CH,, O,, CO, H,,
CO,)

Motor r oy | Feed

= Cooling jacket

» Poor Mass Transfer
Baffle

* Low Volumetric Productivity

i Agitator

Mixed product
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New Bioreactor Technology Needed

109

| B 5 I R

|

10"

kai(s’)

L

|

102 | A | R PO PO S e |
107 10° 10’ 10°
Mass transfer power (kW/m?)

Haynes and Gonzalez, Nature Chemical Biology 10, 331-339 2014
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Printed pMMO Bioreactor to Intensify the
Process

Motor [y Feed

0 E Cooling jacket

methanotroph oMMO enzyme

| Agitator

Mixed product
CH,+O,+2H*+ 2e- | pMMO > CH,OH + H,O
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Direct printing of pMMO: control of surface
area

Impact printer

Zheng et al., Science 344
(6190): 1373-1377 (2014)
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Printed pMMO: increased protein
concentration and activity
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Physiological activity of pMMO achieved in a printed material

Lawrence Livermore National Laboratory ~ Blanchette, C. D. et al. Nature Communications 7, 11900 (2016). 20“%



Printed pMMO: ARPA-e REMOTE targets
reached
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Corresponds to >2g MeOH/L/hr
(with unoptimized structures)

Haynes and Gonzalez. Rethinking biological activation of methane and,, IL

Lawrence Livermore National Laboratory  ,Aversion to liquid fuels. Nature Chemical Biology 10, 331-339 (2014).



Printed pMMO membranes enabled

continuous methanol production at gas- liquid
interface
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« Thin pMMO lattice - higher activity

« Membrane is Progress, But Can We Do Better?
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Potential Reactor Design: “Printed Tube
Reactor”

Enzymé’
Immobilization
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Printed Tube Reactor: Surface Area Created
By Structure & Independent of Pressure Drop
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Printed tube reactor: High mass transfer rate
+ energy efficiency
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Haynes and Gonzalez, Nature Chemical Biology 10, 331-339 2014
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Gyroid reactors: only possible with additive
manufacturing

Polymer Gyroid Reactor (LLNL) Stainless Steel Gyroid Reactor (LLNL)

Lawrence Livermore National Laboratory *



Order-of-magnitude improvement in heat
transfer performance over tubes and flat
plates. '
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T. Femmer et al. Chemical Engineering Journal 273 (2015) 438—445.
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Possible Reactor Configurations

Selective Coa

sfer Fluid

@ .0
L e°
@ 9 .0
@°0

Feed Gas

Liquid Solvent

Permeable Permeable
1 Support Membrane

Permeable
Membrane
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How Can Materials Meet the Potential of
Engineered Enzymes?
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Microencapsulation: Regeneration, Flexible
Reactor Configurations, Relevant Length
Scales

Lyophilized

—

Encapsulated

encapsulated M. capsulatus proteome

Lyophilized encapsulated whole M. capsulatus catalytically active for propylene oxidation

Lawrence Livermore National Laboratory Cells Provided By Calysta “&
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Microbial Electrosynthesis: Reactor

Productivity Depends on Current Density
(Amps/m?)

Standard ME cell

Current Density Requires High Accessible Electrode Surface Area

Lawrence Livermore National Laboratory Logan, B. et al. Environ. Sci. Technol. Lett., 2015, 2 (8), pp 206-214 32@



Standard Electrode Materials Difficult to Scale
while Maintaining Surface Area
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Opportunity: Printed aerogels have
hierarchical, scalable surface area; Enzymes
can be used for charge transfer

3 g | - ~§* ‘J

Small pores for enzyme
absorption for electron
transfer

Larger pores for whole
microbes and/or nutrient
transfer/mixing

Spormann, A. M. et al. Extracellular Enzymes Facilitate Electron Uptake 34@

Lawrence Livermore National Laboratory in Biocorrosion and Bioelectrosynthesis. mBio 6, €00496-15 (2015).



Unique Cell Designs are Available Which
Increase Current Density and Decrease
Diffusion Distances

\ enzymes adsorbed to

Intermediate production module % printed aerogel

to methanogenesis module

3D printed ME cell
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Research Needs:

 Economics, Modeling & Scaling: What is the
price of the surface area?

* Highly Stable Enzymes (months of
operation)

* Reducing Equivalents/Cofactors
(Elimination/recycling/cheaper alternatives)

* Deep understanding of enzyme kinetics and
material permeability

Lawrence Livermore National Laboratory *I&



Unprecedented Control in Enzyme
Engineering and Materials Synthesis -
Rational Design of Biocatalytic Materials and
Reactors .
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 Small Scale, Modular, Higher Process
Intensity
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