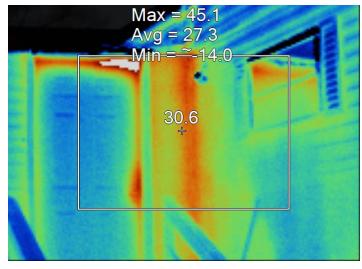
DOE OFFICE OF INDIAN ENERGY EERE Technologies for Alaska

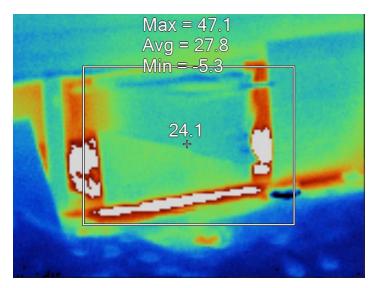
Sherry Stout

ENERGY EFFICIENCY

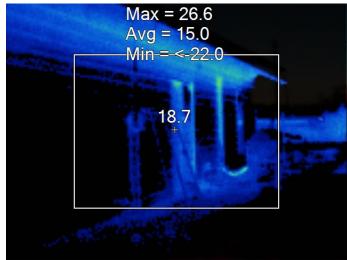
Why Efficiency?

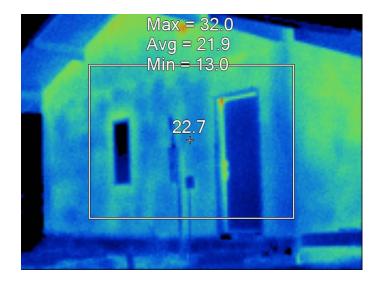
- The cheapest kWh is the one you're not using
- Savings add up to free up money that can be spent on other things
- Often easier and faster than implementing other energy projects
- Payback time is generally shorter often less than 5 years




Example Building Efficiency Upgrades

End Use	Upgrades that Reduce Loads	Upgrades that Help Meet Loads More Efficiently		
Heating, Ventilating and Air-Conditioning (HVAC)	 Insulation (attic, walls, floors, etc.) Air-Sealing Windows/Doors/Skylights Smart Thermostats 	 High-Efficiency Furnace High-Efficiency AC Duct Insulation 		
Water Heating	 Low-flow faucets and showerheads 	High-Efficiency Water HeatersTank Insulation		
Appliances, Lighting, Misc.	 Lighting Sensors/Controls Smart Power Strips 	 ENERGY STAR Appliances CFL/LED Lighting Efficient Electronics 		




Building Envelope Mobile Home

Straw Bale & SIPs

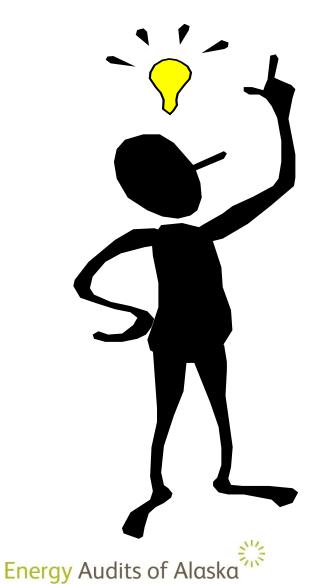
Lighting

- Replace T-12 with T-8 electronic ballasts
- CFLs save 75% over a traditional incandescent lightbulb
- LED lighting saves 85% over a traditional incandescent lightbulb, but lasts much longer

All bulbs deliver equivalent brightness	Single bulb wattage	Wattage used for whole house	
Incandescent bulbs	60 watts	1200 watts	
CFL bulbs	14 watts	280 watts	
LED bulbs	9.5 watts	190 watts	

Diesel Heat Recovery

- Basic Infrastructure that provides heat to multiple buildings
 - Heating Source is waste heat from the diesel generator
 - Heat Exchangers, Controls, and Meters
 - Circulating Pumps and Arctic Piping
- Design Considerations
 - Buildings should be near the power house for diesel waste heat.
 - Hot water boiler using excess wind or hydro can be placed in any building
 - Can provide heat from multiple, different sources – biomass, excess wind, excess hydro



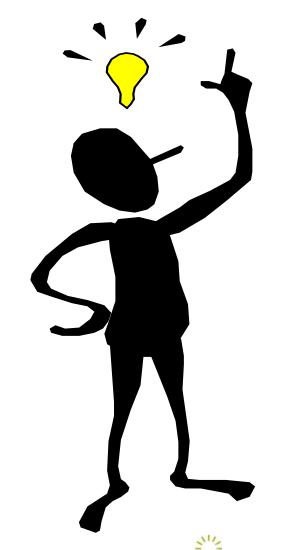
STOR!

WHAT OTHER COMMUNITIES ARE DOING

What Other Communities are Doing: Kwethluk

What if we replaced ALL the bulbs and lamps in the village with LED's? How much would that cost? How much would it save?

What if we replaced the thermostats in every building with programmable models?


What if we bought a blow-in insulation machine and added R-30 insulation to every attic?

What if we trained a couple folks and did air-sealed every home?

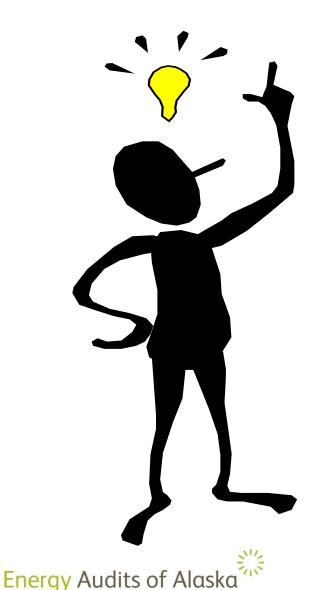
What would the end result be?

Kwethluk

188 residences, 25 commercial buildings:

ENERGY COSTS

Average homeowner electric cost	\$	1,214
Average homeowner fuel oil cost	\$	4,062
Total residential electric costs	\$ 2	28,232
Total residential fuel oil costs		63,656
Total Residential energy costs		91,888


Total non-residential energy cost \$515,816

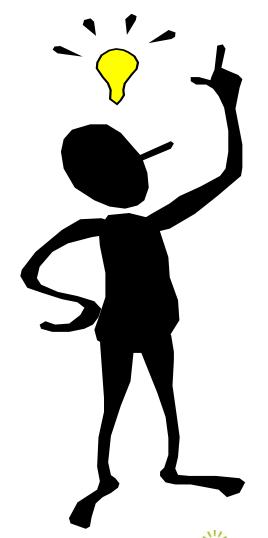
COMMUNITY-WIDE ENERGY COST \$1,507,704

Energy Audits of Alaska"

Potential Savings in Kwethluk:

ALL the bulbs and lamps in the village replaced with LED's: **\$8,404 + \$31,276 = \$39,680**

Programmable thermostats in all buildings: \$36,002 + \$30,676 = \$66,678


Buy a blow-in insulation machine, increase attic insulation to R-60: **\$30,832 + \$7,367 = \$38,199**

Trained community members to air-seal every building: **\$56,118 + \$27,189 = \$83,307**

Total Community-Wide Upgrade Costs \$30,188 + \$381,628 = \$411,816

Potential Savings in Kwethluk:

Residential:

Total Savings \$131,356/year Average homeowner saves \$699/year Average residential upgrade cost \$3,019 Payback in 4.4 years

Non-residential: Total Savings \$96,508/year Average building savings \$3,860/year Average building upgrade cost \$15,265 Payback in 3.9 years

Energy Audits of Alaska

ENERGY Office of Indian Energy

What are some Interior Projects

- What was the planning process?
- How was the system funded?
- Who was responsible for keeping the project going?
- Is there anything you would do differently next time?

Minto Lodge Source: Dave PM

How Can DOE Help?

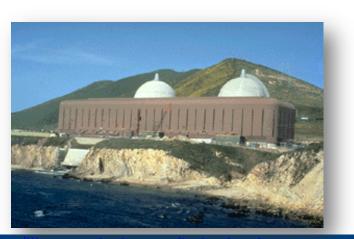
- Resource page at energy.gov/indianenergy
- Technical Assistance
 - PCE Support
 - Energy baselining and line loss analysis
 - Building energy assessments
 - Energy efficiency measures modeling

DOE OFFICE OF INDIAN ENERGY Renewable Energy Technology Options

Sherry Stout

GRID INTEGRATION OF RENEWABLE ENERGY

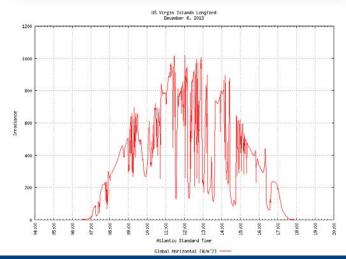
Conventional Generation Sources


Dispatchable

- Energy stored in fuel such as diesel
- Use when needed
- Well understood
- Highly Reliable
- Easy to control

Characteristics:

- Low thermal efficiency (35%)
- Considered a base load unit
- Large capital costs
- Lower operating costs



www.osha.gov/SETC/etools/electric_power/illustrated_glossary/index.htm

Renewable Energy Generation Sources

Source: http://www.osha.gov/SLTC/etools/electric_power/illustrated_glossary/index.html

Non-Dispatchable

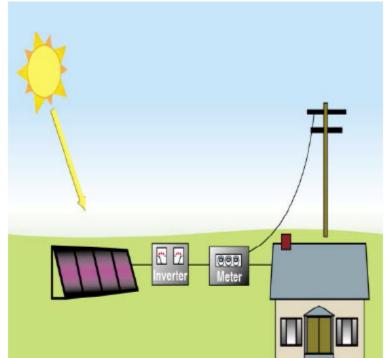
- Considered to be unconventional generation sources
- Characterized by <u>variability</u> and <u>uncertainty</u>
- Energy source must be used when available
- More difficult to control
- More difficult to schedule
- Use it or lose it!

Considerations Before Going Renewable

- Is your power plant operating efficiently (~13 kwh/gal or better)?
- Are your generators and switchgear capable of operating automatically and in parallel?
- Is your distribution system balanced and how much line loss are you experiencing?
- Have you tackled efficiency first?

AVEC Power House in Teller, Alaska

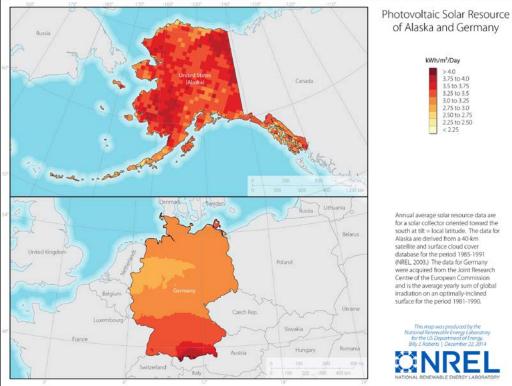
Do you have a local renewable energy source?


- DOE Technical Assistance can provide resource assessments
- AEA also has staff and programs that can help identify possible renewable options

SOLAR PHOTOVOLTAICS (PV)

Flat Plate Photovoltaics

- Direct conversion of sunlight into direct current (DC) electricity
- DC converted to alternating current (AC) by inverter
- Solid-state electronics, no-moving parts

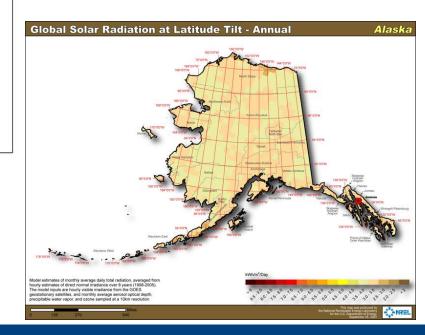


- High reliability, warranties of 20 years or more
- PV modules are wired in series and parallel to meet voltage and current requirements

Illustration by Jim Leyshon, NREL

Alaska Has Significant Solar Potential

kWh/m²/Day 3.75 to 4.0 3.5 to 3.75 3.25 to 3.5 30 to 325 275 to 30 2.50 to 2.75 2.25 to 2.50 Annual average solar resource data are for a solar collector oriented toward the south at tilt = local latitude. The data for Alaska are derived from a 40-km satellite and surface cloud cover database for the period 1985-1991 (NREL, 2003.) The data for Germany were acquired from the Joint Research Centre of the European Commission and is the average yearly sum of global irradiation on an optimally-inclined surface for the period 1981-1990.


of Alaska and Germany

Summertime Opportunity:

- Combine solar PV with wind energy for winter
- Invest in storage •

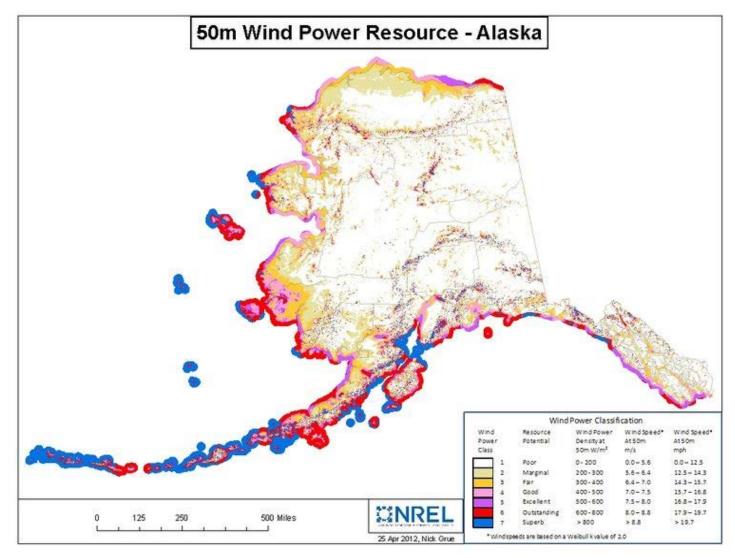
•

Use electric heat in • summer for cold climate regions

What are Some Interior Solar Projects

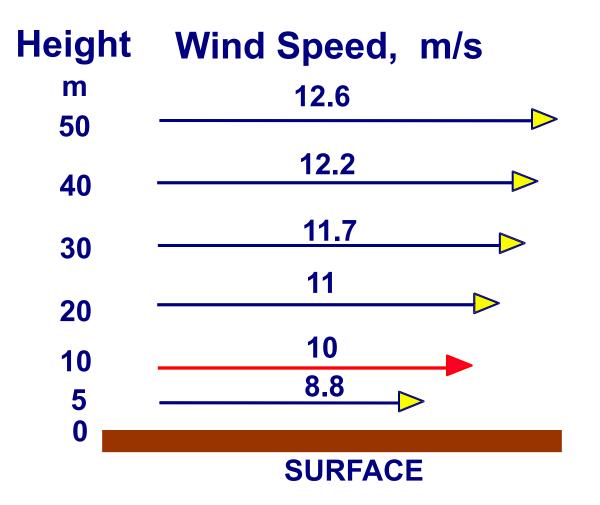
Fort Yukon Solar Array

- What was the planning process?
- How was the system funded?
- Who was responsible for keeping the project going?
- Is there anything you would do differently next time?

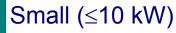

WIND POWER

Wind and PV

- Generation
 - 1 Megawatt installed PV capacity powers ~120 homes (in AK)
 - 1 Megawatt installed wind capacity fuels 240-300 homes (US average)
- Employment
 - US Wind industry employs 88,000 (AWEA 2015 http://www.awea.org/MediaCenter/pressrelease.aspx?ItemNumber=8736)
 - US Solar industry employs 208,859 (TSF 2015 <u>http://www.thesolarfoundation.org/national/</u>)



Wind Resources and Opportunity in Alaska



WIND SHEAR

Courtesy: Alternative Energy Institute

Sizes and Applications

- Homes
- Farms
- Remote Applications

(e.g. water pumping, telecom sites, icemaking)

Intermediate (10 kW-1 MW)

- Village Power
- Hybrid Systems
- Distributed Power

Large (1 MW +)

- Central Station Wind Farms
- Distributed Power
- Community Wind

Characteristics of a Good Wind Site

- Good Wind Resource
- Adequate Transmission
- Reasonable Transportation
- Permitting
- Receptive Community/Utility
- Few Environmental Concerns

• 4 x 50 kW Wind Turbines, Selawik

• 9 x 95 kW Wind Turbines, Tuntutuliak

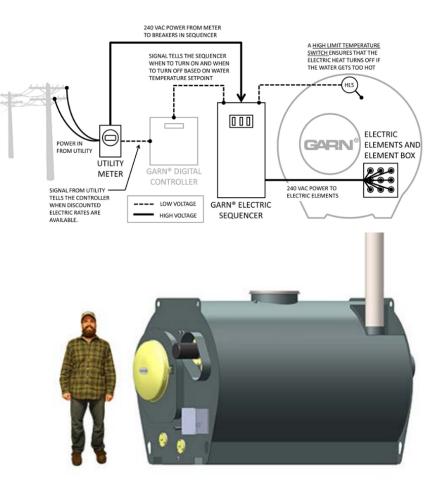
Operations and Maintenance

- Skilled jobs
- Grease gears
- Check wiring
- Look for environmental wear and tear

Interior Wind Projects Lessons and Successes

- What was the planning process?
- How was the system funded?
- Who was responsible for keeping the project going?
- Is there anything you would do differently next time?

BIO-ENERGY


Why Biomass?

- Lowers energy costs with
 a local fuel
- Maintains cash flow within a community
- Creates local jobs and businesses
 - Construction
 - Operation/Maintenance
 - Harvest/Thinning/Resource
 Management
 - Heat Utilities

Cord Wood Boilers

- Wider band of fuel sources
- Some combine heat storage with woodgasifier storage (Garn)
- Considerations:
 - Wood drying
 - Size of feedstock
 - Species of stock (heating values)

Small-scale Biopower

Vegetable Oil Generators

- Straight vegetable oil, used cooking oil, or diesel fuel
- Filtration is required
- Stand-alone or as backup system, off-grid systems
- Safe operation
- Simple maintenance
- Suitable for any season, in any climate

Vegetable Oil Generator (between 12kW and 1 MW, CHP option available) by Alternative Technology Group

Things to Remember

- Storage space is needed for drying wood
- Secure your fuel then match the boiler
- O&M costs some of the highest of renewable technologies
 - Fuel costs
 - Fuel loading
 - Cleaning of boilers

Interior Projects: Lessons and Successes

- What was the planning process?
- How was the system funded?
- Who was responsible for keeping the project going?
- Is there anything you would do differently next time?

Technical Assistance!

- Help Identify efficiency measures
- Provide PCE support
- Identify renewable options
- Identify grid integration options
- Create strategic energy plans
- Assistance with climate resilience/relocation planning

Questions?

Sherry Stout Sherry.Stout@nrel.gov 303-275-4281

