Heating Technologies

- **Biomass**
 - Primary fuels are cordwood, wood chips, wood pellets
 - **Pros**
 - Local fuel source means more money stays local
 - Generally require more local labor, which means local jobs
 - **Cons**
 - Can be very labor intensive
 - Typically for lower heating requirements

- **Heat Pumps**
 - Work on refrigeration principals
 - Draws heat from ground, air, water and redirects it inside
 - **Pros**
 - Very low maintenance
 - Can be reversed to provide cooling on hot summer days
 - **Cons**
 - Require lots of electricity
 - Will not work below certain outside air temperatures
 - Still undergoing arctic testing
The 1st Step - Energy Efficiency

• Make our homes, workplaces and communities energy efficient
 – Energy Efficiency appliances
 – Upgraded lighting
 – Tighten the shell (windows, insulation, etc.)
• Energy Efficiency is far cheaper than renewable energy
• Once efficient, pursue renewable energy
Why Biomass?

- Lowers energy costs with a local fuel
- Maintains cash flow within a community
- Creates local jobs and businesses
 - Construction
 - Operation/Maintenance
 - Harvest/Thinning/Resource Management
 - Heat Utilities
- Supports the Forest Products Industry
 - Use for sawmill waste
 - Use for forest health/thinning residue
Alaska – Where Woody Biomass Can Work!
Cordwood Boilers

- Lots of Job Creation
 - Harvesting
 - Splitting/stacking/storing
 - Regular Stoking
- Easy maintenance
- More difficult to integrate into existing heating system
Wood Chip Boilers

- Easy to operate
 - Mostly automated
 - Minimal maintenance

- More complex maintenance

- Relatively easy to produce fuel
 - Fuel Handling requires a lot of planning
 - High quality fuel is difficult to keep consistent
Pellet Boilers

- Easy to operate
 - Mostly automated
 - Slightly more maintenance than oil boilers

- Specialized Fuel
 - Will depend on local suppliers
 - Easy to handle
Heat Pumps

- Based on refrigeration cycle
- Still under research in Arctic environment
- Low Maintenance
 - Runs like a refrigerator, slow and steady
 - Very efficient
- Somewhat complex system
 - May require specially trained service technician
- Can potentially consume a lot of electricity
 - Will displace other heating fuels
Ground Source Heat Pump

- Draws heat from the ground
- Same principle as permafrost foundation stabilization
- Operate with minimal maintenance
- Can create permafrost
 - Being studied by CCHRC

Photos from Molly Rettig, CCHRC
Air Source Heat Pump

- Draws heat from the air
 - Condenses fluids to boost thermal energy
- Can operate as both heating and cooling appliance
- Several types
 - Ductless mini-splits
 - Conventional
 - Air-to-water
- Currently being tested and researched throughout the state
 - Performing *very* well in SE Alaska
 - Preliminary results promising in NW region
- Requires cheap electricity to make economic sense
Combining Heat & Power (CHP)

- Generate heat and electricity at the same time
 - Similar to heat recovery on some generation systems
- Efficient use of generation fuel

Typical Diesel Generation

- **Usable Electrical Output**: 39,000, 30%
- **Recovered Exhaust Heat**: 23,400, 18%
- **Recovered Jacket Heat**: 19,500, 15%
- **Wasted Exhaust Heat**: 19,500, 15%
- **Wasted Jacket Heat Loss**: 5,200, 4%
- **Wasted Mechanical Loss**: 5,200, 4%
Modular CHP Systems

- Various systems on the market
- Volter Oy being tested in Fairbanks