

High Temperature Downhole Motor

Project Officer: Lauren Boyd Total Project Funding: \$3,349k November 15, 2017 This presentation does not contain any proprietary confidential, or otherwise restricted information.

David W. Raymond - Principal Investigator with William Radigan, Elton Wright, Jeff Greving, Dennis King, Jiann Su & Steve Knudsen

Sandia National Laboratories

Track 3 - EGS Tools

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2017-10971 C.

Relevance to Industry Needs and GTO Objectives

- Objectives
 - Develop technology for a new downhole motor for geothermal drilling
 - Design power section and demonstrate viability with a proof of concept demonstration
 - Enable high temperature downhole rotation solution for directional drilling and eventual rotary steerables contributing to multi-lateral completions
- Barriers Geothermal drilling hampered by downhole rotation capabilities
 - Positive Displacement Motors
 - Temperature limitations: 350F (177C) max
 - Introduce lateral vibration to BHA
 - Possible torque limitations for hard rock
 - Mud Turbines Performance limitations: High speed, low torque
 - Limits options for multi-lateral completions in geothermal well construction
- Impact
 - Technology is needed that improves ROP and capable of drilling to depth
 - Multi-lateral completions will allow improved resource recovery, decreased environmental impact, and enhanced well construction economics
 - Development of a high temperature motor is an EGS-enabling technology

Project Overview

ENERGY Energy Efficiency & Renewable Energy

PDM per Toro Downhole Tools

Axial Motor Hardware Video

Bent-axis and inline swashplate hydraulic motor per Hydraulics & Pneumatics.com

Sandia Prototype Motor Concept (U.S. Patent 9,447,798 B1)

3 | US DOE Geothermal Office eere.energy.gov

Methods/Approach

Work Scope

- Task 1 Project Management
 - Stewardship of DOE/EERE funding towards developmental motor concept
 - Facilitate industry partnerships and commercial licensing opportunities
- Task 2 Requirements Definition
 - Compile / evaluate results from survey of current motor product offerings
 - Compare results to requirements for fixed cutter bits drilling geothermal formations
- Task 3 & 4 Preliminary & Detailed Engineering Design
 - Design power section concepts for downhole motor applications in HT environments
- Task 5 Computational Modeling & Analysis
 - Conduct engineering modeling and analysis to validate concepts
 - Evaluate flow conditions through rotor, ports & chambers
 - Develop operational performance predictions for fluid / power section interaction
- Task 6 Prototype Hardware Development & Testing
 - Develop and test prototype hardware in controlled laboratory test fixtures to demonstrate and validate available performance
- Task 7 Field Testing
 - Placeholder for subsequent fiscal years

Technical Accomplishments and Progress: Task 2 / Requirements Definition

Rock Bit Interaction Analysis for formation suitability

$$E = \frac{2T}{r^2 \delta} \qquad S = \frac{W}{r \delta}$$

NOV/Sandia Test Bit, Dec 2011

Compare to Survey of existing PDM Motors Torque & Power Profile

5 | US DOE Geothermal Office eere.energy.gov

Technical Accomplishments and Progress: Task 3 & 4 / Power Section Design

Prototype Power Section Developed and Demonstrated

- Power Section Design Description
 - Fluid Power Cycle
 - Piston oscillation generated by hydraulic flow through tool
 - Requires alternating pressure on piston lands for reciprocation
 - Harmonic drive coupling converts axial piston force / motion to rotor torque / rotation
 - Requires multiple pistons
 - Continuous rotation
 - Torque generation
 - Overcome dwell points
 - Design Intent
 - Allow fluid leakage / no seals
 - Low friction surfaces at piston interfaces
 - Removable Rotor Assembly
 - Case/Rotor Design Integration
 - Pressure/Exhaust Manifold Integration
 - Piston Motion / Valve Port Integration

U.S. Patent 9,447,798B1 from U.S. Patent Application No. 14/209,840, filed 3/13/2014;

CIP of U.S. App. No. 14/298,377, filed 05/05/2014 and U.S. Provisional Patent Application No. 62/142,837, filed 4/3/2015.

Technical Accomplishments and Progress: Task 3 & 4 / Power Section Design

AXIAL PISTON PROTOTYPE MODULE

Module Design - Axial Piston Configuration

U.S. Patent 9,447,798B1 from U.S. Patent Application No. 14/209,840, filed 3/13/2014; CIP of U.S. App. No. 14/298,377, filed 05/05/2014 and U.S. Provisional Patent Application No. 62/142,837, filed 4/3/2015 and. U.S. Patent App. No. 15/090,282 -**Modular Fluid Powered Linear Piston Motors with Harmonic Coupling**

Technical Accomplishments and Progress: Task 3 & 4 / Power Section Design

Ball Transfer

- Allows retainer to remain centralized in Piston/Ring
- React side loads from single harmonic system
- Centralize retainer with respect to harmonic drive rotor
- Tungsten Carbide PCD Die
- PCD on Rotating Ball Surface (μ=0.1)

Patent Pending
U.S. Patent App. No. 15/15726506, Ball Transfer Mechanism with
Polycrystalline Diamond Bearing Support

Advanced Harmonic Drive (AHD)

- Specify ball track on rotor and piston/ring for ball rotation with no slipping
- Developed Frenet-Serret frames for analysis
- Identify design constraints between harmonic amplitude, ball & track diameters

Patent Pending
SD-14556 - Harmonic Drive for Converting
Reciprocating Axial to Continuous Rotary

Technical Accomplishments and Progress: Task 3 & 4 / Power Section Design

ROTARY PISTON PROTOTYPE MODULE

- Rotary Piston Configuration with Torque Inverter
 - Accommodates drilling fluids
 - Generates high torques
 - Dual Rotor System
 - Single Stage Module
 - Serial Connect Multiple Modules for Full N
 - HT Prototype Motor Basis

U.S. Patent 9,447,798B1 from U.S. Patent Application No. 14/209,840, filed 3/13/2014; CIP of U.S. App. No. 14/298,377, filed 05/05/2014 and U.S. Provisional Patent Application No. 62/142,837, filed 4/3/2015 and U.S. Patent App. No. 15/090,282 - Modular Fluid Powered Linear Piston Motors with Harmonic Coupling and U.S. Patent App. No. 62569074 - Fluid-Powered Linear Motor with Rotary Pistons and Motion Rectifier.

Technical Accomplishments and Progress: Task 5 / Computational Modeling & Analysis

CONTACT STRESS ANALYSIS

If:

E_{*} – Elastic Modulus of Material for Body 1 or 2

v_∗ – Poisson's Ratio of Material for Body 1 or 2

R_{*} - Principal Radii of curvature of Body 1 and 2

R'_{*} –Radii of curvature of Body 1 and 2 in a direction orthogonal to R_{*}

F_s - Total applied load

Geometrical Constant:

$$K_{d_1} \! = \! \frac{1.5}{\frac{1}{R_{1_1}} + \frac{1}{R_{1_1}'} + \frac{1}{R_{Cyl}} + \frac{1}{R_{2_1'}}}$$

Material Constant:

$$C_{e_1} = \frac{1 - {\nu_{1_1}}^2}{E_{1_1}} + \frac{1 - {\nu_{2_1}}^2}{E_{2_1}}$$

 θ describes the degree of contact between the two bodies:

$$\cos\Theta = \frac{K_d}{1.5} \cdot \sqrt{\left(\frac{1}{R_1} - \frac{1}{R_1'}\right)^2 + \left(\frac{1}{R_{Cyl}} - \frac{1}{R_2'}\right)^2 + 2 \cdot \left(\frac{1}{R_1} - \frac{1}{R_1'}\right) \cdot \left(\frac{1}{R_{Cyl}} - \frac{1}{R_2'}\right) \cdot \cos\left(2 \cdot \phi\right)}$$

 $cos(\theta)$ is used to calculate the size of the elliptical contact (c & d)

cox θ	0.00	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.75	0.80	0.85	0.90	0.92	0.94	0.96	0.98	0.99
α	1.000	1.070	1.150	1.242	1.351	1.486	1.661	1.905	2.072	2.292	2.600	3.093	3.396	3.824	4.508	5.937	7.774
β	1.000	0.936	0.878	0.822	0.769	0.717	0.664	0.608	0.578	0.544	0.507	0.461	0.438	0.412	0.378	0.328	0.287
λ	0.750	0.748	0.743	0.734	0.721	0.703	0.678	0.644	0.622	0.594	0.559	0.510	0.484	0.452	0.410	0.345	0.288

$$c = \alpha \cdot \left(\frac{F \cdot K_{d_1} \cdot C_{e_1}}{1}\right)^{\frac{1}{3}}$$

$$d = \beta \cdot \left(\frac{F \cdot K_{d_1} \cdot C_{e_1}}{1}\right)^{\frac{1}{3}}$$

Maximum Contact Pressure: $\sigma_{c_{max}}$:

$$\sigma_{c_{max}} = \frac{1.5 \cdot F}{\pi \cdot c \cdot d}$$

Solution of the above for the 2nd generation prototype geometry (0.688" diameter ball) and tungsten carbide mating materials results in a maximum contact load of 4460 lbf.

Technical Accomplishments and Progress: Task 5 / Computational Modeling & Analysis

Control Volume – Conservation of Mass The instantaneous mass within the piston bore is

$$M = \rho V$$

The fluid mass time rate of change is

$$\frac{dM}{dt} = \frac{d\rho}{dt}V + \rho \frac{dV}{dt}$$

where

$$\frac{dM}{dt} = \rho Q = m_{in} - \dot{m}_{out}$$

From the definition of Bulk Modulus,

$$\beta = \rho \frac{dP}{dp}$$

then,

$$\frac{dM}{dt} = \rho Q = \frac{\rho}{\beta} \frac{dP}{dt} V + \rho \frac{dV}{dt}$$

$$\frac{\rho}{\beta} \frac{dP}{dt} V = \rho Q - \rho \frac{dV}{dt} = \rho (Q - \frac{dV}{dt})$$

$$\frac{dP}{dt} = \frac{\beta}{V} (Q - \frac{dV}{dt})$$

Using $\omega = \frac{d\theta}{dt}$ and the chain rule for $\frac{dV}{dt} = \frac{dV}{d\theta} \frac{d\theta}{dt}$ Then the pressure on the piston as a function of rotary angle is

$$\frac{dP}{dt} = \frac{dP}{d\theta} \frac{d\theta}{dt} = \frac{\beta}{V} \left(Q - \frac{dV}{d\theta} \frac{d\theta}{dt} \right)$$

and

$$\frac{dP}{d\theta} = \frac{\beta}{V} \left(\frac{Q}{\omega} - \frac{dV}{d\theta} \right)$$

Fluid Power Cycle Modeling

- Use to address coupling between fluid mechanics and reciprocating pistons
- Investigate influence of valve geometry and timing on motor performance

Technical Accomplishments and Progress: Task 6 / Prototype Demonstrations

Approach

- Develop load testing capability to evaluate prototype motors
- Use for single & multi-stage motor testing
- Compare to PDM

Results

- Dynamometer Test Station
 - Developed using Powder Brake Dynamometer
 - Sized to provide braking load for proof of concept motor
 - Pressure vessel, rotating head, & swivel qualified and operational
 - Qualified on commercially-available piston motor
- Prototype Motors
 - Single and multi-stage functionality demonstrated
 - Full power section testing underway
 - Testing has highlighted importance of
 - Relative deflections in members
 - Assembly preload
 - · Harmonic drive stress concentrations
 - Material compatibilities
- PDM to be tested for side- by-side comparison with prototype motor

U.S. Patent 9,447,798B1 from U.S. Patent Application No. 14/209,840, filed 3/13/2014; CIP of U.S. App. No. 14/298,377, filed 05/05/2014 and U.S. Provisional Patent Application No. 62/142,837, filed 4/3/2015.

Technical Accomplishments and Progress

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed			
	Performance requirements for geothermal drilling identified by rock bit interaction analysis				
Conceptual, Preliminary and Detailed Power Section Design	Operational performance requirements for various motor sizes identified by survey of existing downhole motor products				
	Preliminary/prototype design developed for 3" diameter axial piston motor incorporating key features in eventual downhole piston motor concept				
Power Section developed for Fluid-end/Power-end separation.	Complete	3/31/2016			
Qualified design of Advanced Harmonic Drive for Critical Function Evaluation (CFE) and Proof of Concept (POC) Demonstration	Complete - additional static/dynamic characterization underway	3/31/2017			
	Preliminary dynamometer test system in place to accommodate laboratory evaluations				
Test Platform Design & Development	Dynamometer Test Station proven on industry standard piston motor				
	Hydraulic fluid power flow loop developed with pressure vessel/motor housing, rotating head and swivel	Pre-FY16			
	Compressed air (Nitrogen) test system designed and developed				
	Water-based drilling fluid test system designed; development underway				
Water-based drilling fluid test system commissioned.	High Pressure pump on order; flow loop comissioning pending	pending			
	Prototype hardware fabricated, assembled, bench-top tested with ongoing testing on the hydraulic test system				
Prototype Development, Demonstration and Validation	idation Conceptual design conceived; demonstration pending for Fluid-End/Power-End separation				
	Prototype design developed including material formulations, assembly methods and operational specifications				
SMART Milestone - Demonstrate a motor performance metric of 250 ft-lb of torque delivery at a 600 psi pressure differential and 90 RPM of rotary speed at 20 gallons per minute flow rate when running the 3 inch diameter prototype section on water-based drilling fluids on the Dynamometer Test Station.	Prototype hardware released for fabrication - testing will commence in early FY18	pending			
Complete component fabrication, sub-assembly checkout and assembly integration of prototype power section with Advanced Harmonic Drive	Pending - AHD will be integrated into helical drive following prototype demonstration using ball transfers	pending			
Critical Function Evaluation	Preliminary testing of first generation prototype on DTS using hydraulic fluid power fluid	Pre-FY16			
Critical Function Evaluation of Power Section on Hydraulic Fluid, H2O & N2 including sub-assembly compatibility evaluation with water-based mud	CFE on Hydraulic Fluid, H2O and N2 pending completion of prototype hardware POC	pending			
Critical Function Evaluation of power section on water-based drilling fluid.	Commence following integration of diamond bearings in FY18	pending			
High Temperature Proof Of Concept Demonstration of prototype power section operating on N2 power fluid with representative drilling brake horsepower applied	Complete following CFE of diamond bearings in FY18	pending			

Research Collaboration and Technology Transfer

- Industry and/or academic engagement
 - Radigan Engineering, Design Services & Analytical Support
 - US Synthetic
 - Ball Transfer Direct Sintering
 - PCD Bearings
- Opportunities or efforts currently underway to transition technology to the private sector
 - Marathon Oil Technical Interchange Meetings
 - Technology To Market (T2M) Initiative

Future Directions

- FY18
 - Demonstrate prototype axial and rotary piston module/motor on hydraulic fluid
 - Upgrade motor with diamond bearings & evaluate using water-based fluids and compressed air (nitrogen) with test capability added to Dynamometer Test Station to accommodate these fluids
- Long-Term / Out-years
 - Critical function evaluation of power section with the Dynamometer
 Test Station upgraded for high temperature evaluation
 - Develop prototype downhole motor via design integration of prototype power section with a bearing pack & test in laboratory drilling configuration for BHA readiness
 - Field testing to demonstrate motor performance under rigors of geothermal drilling

Diamond Bearings per US Synthetic

Milestone or Go/No-Go	Status & Expected Completion Date
Qualified design of Prototype Power Section incorporating diamond bearings	1/31/2018
Complete component fabrication, sub-assembly checkout and assembly integration	3/31/2018
Critical Function Evaluation of Power Section using diamond bearings on Hydraulic Fluid, H20 & N2	9/30/2018

Summary

- Reliable downhole motors do not exist for geothermal drilling
 - PDM temperature/vibration limitations; Mud Turbines performance limitations
 - An improved motor concept is needed:
 - overcome temperature limitations
 - mitigate drillstring vibrations
 - Directional drilling can be used to enable multi-lateral completions from a single well pad to improve well productivity and decrease environmental impact
- This project will introduce a high temperature downhole rotation concept
 - Prototype Power Section designed, developed, demonstrated & critical function evaluation underway
 - Pathway to abrasion resistant, high temperature operation identified
 - Project will develop prototype to technology transfer level
 - Work with commercial partner to produce full-scale downhole motor for geothermal drilling