

Radioisotope Tracers to Define Fracture Attributes for EGS

Project Officer: Elisabet Metcalf Total Project Funding: \$1.013M

November 2017

Principal Investigator: Shaun T. Brown Energy Geosciences Divison Lawrence Berkeley National Lab

EGS Tools

Relevance/Impact of Research

Characterization goal:

 Complete 3D reservoir, stress and fracture models constrained by all observations

Contribution:

- Isotopic tracers that will constrain the surface area and aperture of hydraulically conductive fractures
 - Focus on short lived radioisotopes such as ²²²Rn
 - Compliment with ⁸⁷Sr/⁸⁶Sr and δ¹⁸O that probe fracture spacing

Relevance/Impact of Research

Challenge: The distribution of fractures and their properties (e.g. surface area, aperture, spacing and reactivity) are poorly quantified in both natural enhanced geothermal systems.

222Rn:

Proposed Solution: Utilize isotopes with differing reactive length scales to quantify surface properties.

Relevance/Impact of Research

Challenge: Prior work using ²²²Rn to calculate fracture aperture was not widely successful.

We hypothesize a mechanistic understanding of the emanation factor (*E*) at fracture surfaces will make ²²²Rn a powerful tracer of fracture surface properties.

Proposed Solution: Careful lab experiments coupled with reactive transport modeling.

Technical Approach Summary

- Construct simplified analytical and numerical models to approximate uranium series isotope behavior in geothermal water-rock systems
- 2) Use preliminary model results to design hydrothermal experiments
- 3) Characterize the physical, chemical and isotopic properties of the starting rock material
- 4) Conduct reactive transport experiments
- Compare experimental and model results, revise hypotheses as necessary
- 6) Validate at multiple field scales/locations

Technical Approach Summary: Reactor Design

Key features:

- Precise control of T, P and fluid velocity
- Continuous and automated influent
- Continuous and automated ²²²Rn
- Fraction collection of fluid samples
- Ability to adapt for temperature gradient non-H₂O fluids (e.g. CO₂) in the future

Technical Approach Summary: Modeling Design

- Dual Porosity 1-D 1 meter column
- 2. Pore space: k=10⁻¹¹ m², 40% of total volume
- 3. Grains: k=10⁻²² m², 1% internal porosity
- 4. Diffusive (dominant) and advective transport between grains and pores
- 5. 3% "direct" emanation of ²²²Rn from grains: R = 6.54e-18 mol/s. 6ppm Uranium in bulk rock
- 6. ²²²Rn emanation from minerals: 1e-23 mol/s
- 7. 226 Ra+2(aq) -> 222 Rn(aq): R = 1.372 e-11 mol/L/s
- 8. 222 Rn(aq) decay: Decay constant = 2.095e-6 1/s
- 9. Desert Peak Tuff chemistry (will change to Bishop Tuff once characterization is complete)

Pore-Scale Dual-Continuum Model For Porous Grains:

- To capture diffusion, local reactive surface area and equilibria

At each spatial location, there are two coexisting continua: grains and pores. For a dual-continuum, under transient conditions the distance from internal micropores to external macropores should be ~ 1/6 the radius (Zimmerman et al., 1993).

Thus 2 reactive surfaces areas: External grains and internal pores

Technical Accomplishments and Progress

- Accomplishments/Progress to date.
 - Reactive transport experiments completed
 - Field validation study completed (low T)
 - Data collection completed
 - Stanford and GRC papers presented
 - technical target/goals.
 - Identify the most important technical challenge(s) faced during this reporting period and their impacts
 on the accomplishments and progress.
- Challenges
 - Relatively low ²²²Rn concentrations in our lab scale experiments
 - Some minor technical challenges with experiments requiring revision of design

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Field Scale Analog Experiment (High T)	Field Scale Analog Experiment (Low T)	8/2016
Column Experiments	Column Experiments	5/2017

9 | US DOE Geothermal Office eere.energy.gov

Technical Accomplishments and Progress

- transport experiments
- Once the experiments reach steady-state the activity is ~40 PCi/L.
- This value has a propigated uncertainty of ~10 PCi/L or 25%.
- This is an upper bound on the uncertainty we expect at the field scale.

Representative cation concentrations

Technical Accomplishments and Progress

- Altona pump test
- 650 liters of zero radon water injected at ~6 l/m with recirculation thereafter.
- Cs and I added as tracers to injectate.
- Oxygen from the injection solution is an unintended conservative tracer

Results of Lake to Seep Calibration

- Assume lake water with 0 pci/liter ²²²Rn
- Fracture aperture of 0.5 mm and a hydraulic gradient of 0.0037
- Intrinsic ²²²Rn flux of 1 x 10⁻¹⁴ mol/kg H₂O/s/mol U-238 gives ²²²Rn activity of about 2100 pci/liter at well 304
- Does not predict seep composition, indicating seep may not be directly related
- Note difference of ~ 500 pci/liter between Well 204 (injection) and 304 (pumping) over a distance of only 14 m (not observed in 2017 direct measurements)
- Now relaxing the lake boundary condition and directly quantifying ²²²Rn from the fracture

Reactive Transport Model Setup Rescription **Energy Efficiency &** Renewable Energy **Parameter Sets**

- Discrete fracture models (2D & 3D) used to evaluate Rn-222 activities and dissolved O₂ concentrations, during groundwater flow and injection/pumping
- Reactive-transport simulations include Rn-222 generation, decay, advection, and diffusion
- Simulator: TOUGHREACT V3.3-OMP (based or Sonnenthal et al. 2014; Xu et al. 2011)
- 2-D lake-seep model used to calibrate Rn-222 fluxes using aperture, flow rate, and hydraulic gradient from Hawkins et al. (2016)
- Apertures and permeabilities (anisotropic) varied in 3-D site model to capture the observed O₂(aq) arrival time (pumping/injection)
- Radon fluxes varied based initially on estimated

Schematic diagram showing fracture zone and bounding rock matrix grid blocks

uranium abundance of 4 ppm Hydrological and Transport Parameters for Lake-Seep (L-S) and 3-D Site Model

Parameter	Fracture	Sandstone	Fracture	Sandstone	Fracture	Sandstone
	(L-S)	(L-S)	Case 1	Case 1	Case 2	Case 2
φ	0.125	0.01	0.115	0.01	0.15	0.01
k_x (m ²)	9.34 x 10 ⁻⁹	10-16	6.24 x 10 ⁻⁹	10-15	2.0 x 10 ⁻⁸	10-15
k_y (m ²)	9.34 x 10 ⁻⁹	10-16	3.12 x 10 ⁻⁹	10-15	1.0 x 10 ⁻⁸	10-15
k_z (m ²)	10-16	10-16	10-15	10-15	10-15	10-15
Aperture (mm)	0.50	-	0.46	-	0.6	-
τ	1.0	1.0	1.0	1.0	1.0	1.0
Rn flux/mol U	10-14	10-14	10-14	10-14	3 x 10 ⁻¹⁴	3 x 10 ⁻¹⁴
(mol/kg H₂O/s)						

13 | US DOE Geotherma eere.energy.gov

Modeled 3-D Injection/Pumpie Renewable Energy & Renewable Energy

- Fracture plane Rn-222 activity contours
- Pumping results in mixing much higher activity downstream Rn-222 groundwater with ~10 pci/liter tank water

120 minutes: Groundwater injection after 81 minutes of tank water injection

5.7 liters/minute injection: 6.8 liters/minute numning

Comparison to Measured O₂ (aq) and Rn-222

- Dissolved O₂ matches best with larger aperture (0.6 mm: Case 2) and equilibrated with atmosphere at groundwater temperature (10.5 °C), and no redox effects over a few hours
- Rn-222 activities match better with smaller aperture (or higher Rn flux)
- Peak in O₂ concentration and sharp drop in Rn-222 potentially explained by shutoff of injection/pumping with solely downstream flow for ~10 minutes, probably a result of changing to recirculated water
- High measured Rn-222 activities during pumping could be a result of other factors such as gas evolution from matrix during pumping or better connection to connected fractures with high Rn-222 without dilution of O₂ (aq)
- Now we are reevaluating the interpretation of the O2 data compared to the other tracers

Research Collaboration and Technology Transfer

- Academic engagement:
 - Collaboration with Cornell on the Altona field site
 - Academic partners UC Berkeley and U. Delaware involved in project
 - Supported current secondary science educator (MS student) on summer research experience
- Private Sector Engagement:
 - In the next 6-12 months as publications are released we plan to engage industry contacts
 - Additional opportunities to engage outside of geothermal

Future Directions

- Immediate future work:
 - Revise models for experiments and field scale tests, submit publications
 - Adapt work and begin validation efforts as part of Collab/Sigma V.
 - Apply model to Long Valley/Mammoth geothermal system Explain key activities for the rest of FY2018 and to project completion.
- Long range future work:
 - Validate temperature dependence of ²²²Rn emanation
 - Develop ²²²Rn as a monitoring tool (TMT suggestion)
 - Incorporate other surface area tracers for cross validation (e.g. lithium)

Milestone or Go/No-Go	Status & Expected Completion Date
Publications submissions (peer review)	12/1/2017
All data to geothermal database	2/1/2018
Final report	4/1/2018

17 | US DOE Geothermal Office

Mandatory Summary Slide

- ²²²Rn concentration in geothermal fluids are primarily controlled by reservoir surface area and geochemical properties of the reservoir rock
- Models of ²²²Rn emanation can be related to fracture surface area
- Secondary effects such as temperature and fracture surface alteration still need to be addressed in a more quantitative fashion