

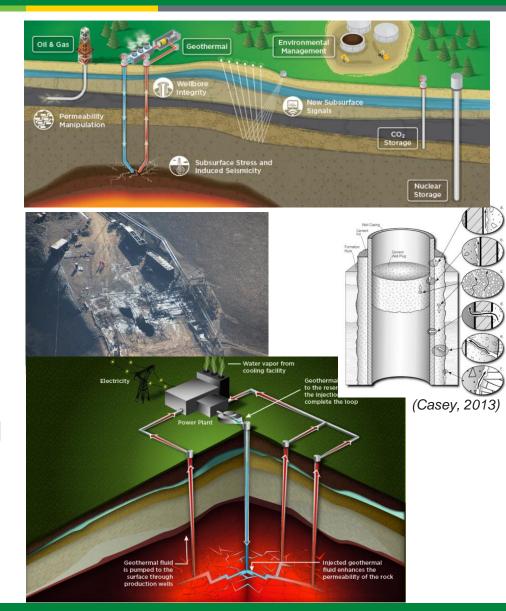
Wellbore Integrity asSEssment with Casingbased Advanced senSING (WISE-CASING)

Project Officer: Alex Prisjatschew Total Project Funding: \$1.2M November 14, 2017 Principal Investigator
Yuxin Wu
Lawrence Berkeley National Lab

SubTER

This presentation does not contain any proprietary confidential, or otherwise restricted information.

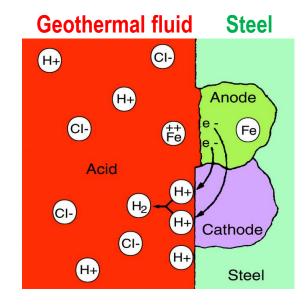
Wellbore Corrosion

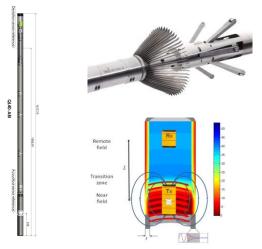


Wellbore corrosion and impact

- COST: \$170B /year due to corrosion in energy/chemical industry
- Health/environmental risks

Geothermal fluid-cement– steel system


- Mechanical/thermal/chemical
- Thermal cycling and stimulated corrosion rates
- Stress induced damage
- Corrosion due to low pH,
 CO₂/brine (also H₂S)



Corrosion Monitoring

- Corrosion is pervasive, while may or may not lead to imminent borehole failure
- Wellbore corrosion monitoring is challenging due to the long length and pressurization of the casing, complex geological, mechanical, chemical conditions
- Corrosion monitoring state-of-the- art: Wireline based downhole logging tools (e.g. EM, acoustic, mechanical)

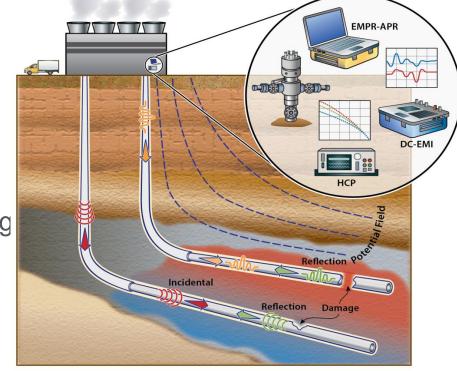
Corrosion Monitoring Challenges

Downhole logging tool

- High resolution
- Intrusive and interruptive
- Expensive to obtain, leading to infrequent application
- Incapable of frequent monitoring for degradation trajectory prediction
- Incapable of early warning of potential failure

New innovation

- Non-invasive: No in- or behind- casing deployment
- Cost effective: Wellhead based, no wireline tools/borehole trips
- High efficiency: No borehole trips, short acquisition times
- Model/Data integration: data interpretation/model -> predictive capability

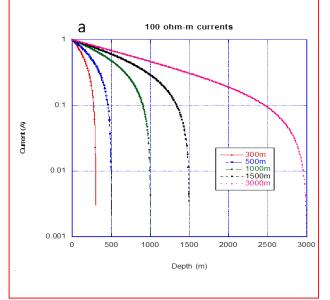

Proposed Approach

- Non-invasive, casing based approach combines fast/low cost screening with higher-precision investigation
- Based on monitoring the response of the casing when energized at the wellhead, thereby interrogating the casing without well intervention.

A toolbox that combines

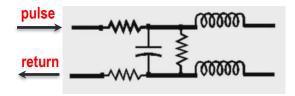
- Low frequency EM potential field imaging
- EM and acoustic pulse reflectometry – travel time positioning
- Electrochemical sensing casing half cell potential and corrosion rate estimation

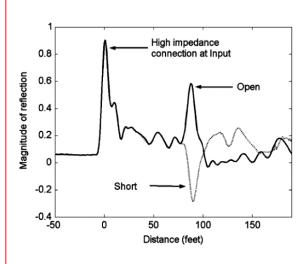
EESA17-024


Technical Background

Low frequency EM

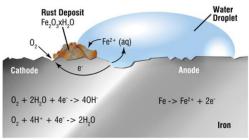
$$I_{cas}(z) = I_0 \exp(-\frac{z}{L_c})$$

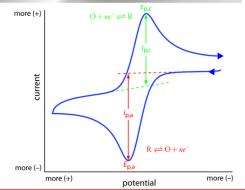

Where


$$L_c = \sqrt{\rho_{formation}\sigma_{case}A_{case}}$$

Pulse reflectometry

$$\Gamma = \frac{V_{reflected}}{V_{incident}} = \frac{Z_d - Z_0}{Z_d + Z_0}$$

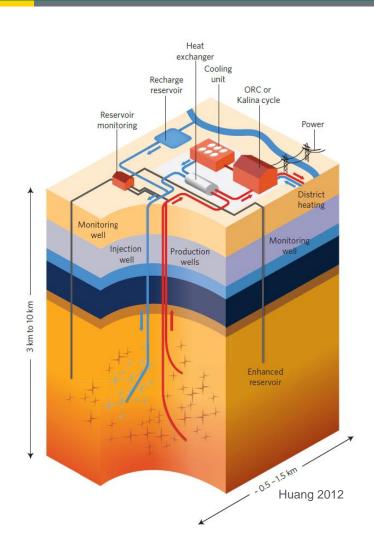




 Electrochemical monitoring

$$\alpha A + \beta B \leftrightarrow \gamma C + \delta D + ne^-$$

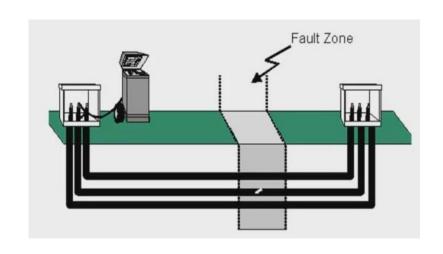
$$E = E^{0} + \frac{RT}{nF} \ln \left[\frac{a_{C}^{\gamma} a_{D}^{\delta}}{a_{A}^{\alpha} a_{R}^{\beta}} \right]$$

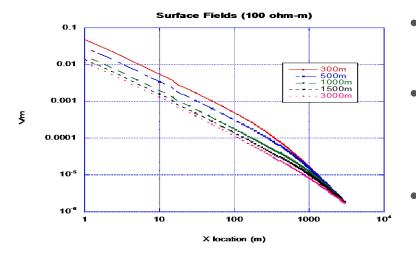


Technical Challenges

- Ambient noise, infrastructure and geology
 - Ambient noise and infrastructure on signal quality, complex geology and geochemistry
- Signal attenuation and dispersion: current leakage to formation may limit depth of penetration
- Reflectometry: Critical reflection identification from background noise of generic irregularity
- Electrochemistry challenge: Borehole environments (cement resistivity, moisture, Cl content) effects on signal
- **Electrochemical challenge**: Identify critical signals associated with tipping point of casing failure
- Numerical model: develop fast and effective failure prediction models

Technical Tasks


Three-year Goal: Proof of concept - > Field demonstration (TRL 1/2 -> 5/6) 1st Year Tasks:


- Initial technological feasibility evaluation (1st -3rd month)
 - Literature survey on theory and case studies
 - Preliminary modeling with current codes
- **Laboratory studies** to develop the technologies and their integration for simple baseline cases with no corrosion (3rd -8th month)
 - Understand signal characteristics
 - Optimize data acquisition parameters
 - Evaluate sensitivity and signal attenuation/dispersion
- Numerical model calibration and improvements based on laboratory datasets (4th – 9th month)
 - Attenuation coefficient, EM/acoustic velocity model, borehole geometry and geology effects
- Proof-of-concept field demonstration in shallow boreholes (9th -11th month)
 - Baseline case with relatively shallow wells, simple geometry, minimal corrosion

Technological feasibility study

- Survey borehole corrosion patterns and impacts from geothermal fields
- Literature in cable fault identification applications
- Corrosion electrochemistry and quantification tools

- Conducting potential field modeling with wellhead energization with existing codes
- Surface electric field profile measurements shows sensitivity to completion depths
 - Corroded or broken casing analogous to shorter casing above break

Baseline Lab Experiments

- Lab experiment design ongoing. Will focus on fresh low carbon steel tubing with no natural corrosion, but controlled damage
- Setting up physical model (30x3x3 ft)
- Instrumentation procurement in process for Time Domain Reflectometry and Potentiostat

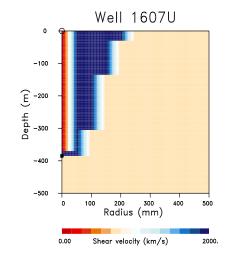


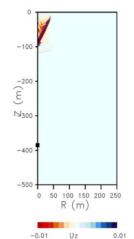
Numerical Modeling & Improvements

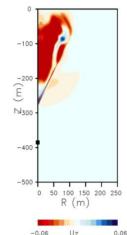
Low frequency EM

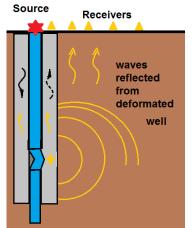
- Numerical Modeling:
 - Calibrating numerical modeling codes for single casing & with pipe network
 - Design surface EM configurations for monitoring wellbore integrity
- Field Data Acquisition:
 - Electric and electromagnetic data acquisition at Field Research Station (Brooks, Alberta)
 - Three wells (100, 300 and 500m in depth) to be considered

Containment and Monitoring Institute (CaMI)
Carbon Management Canada/U. Calgary


11 | US DOE Geothermal Office eere.energy.gov




Finite difference modeling of tube waves



Hammer – Recently tested Weight drop –near future

Finite difference modeling

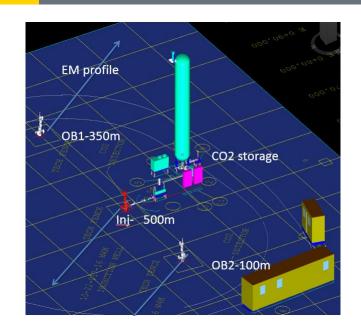
Simulation of wave propagation in Laplace Fourier domain

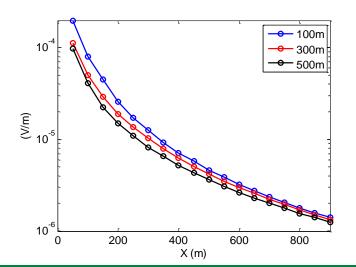
Tasks:

- Large scale 3D simulation in Laplace-Fourier domain
- Calculate parameters of signals from well deformations
- Definition optimal frequencies and source-receivers positions
- Model integration

Tools:

LBL parallel 3D finite-difference elastic code


12 | US DOE Geothermal Office eere.energy.gov



Field Site Identification and Experiments

CaMI Field Research Station

- Three wells (100, 300 and 500m steel casing)
- Time lapse cross well EM will be used to track CO₂ injection
- Separate EM profile measurements to be made to determine (known) completion depths

- Low frequency EM profiles from each well are distinct
- Additional models to determine optimal frequency, position of return electrodes, effect of noise and infrastructure, effect of geological stratigraphy

Potential geothermal sites: The Geysers

Technical Accomplishments and Progress

Original Planned Milestone/ Technical Accomplishment	Actual Milestone/Technical Accomplishment	Date Completed
Q1M: Literature/model survey + model selection/parameterization	Survey ongoing, models identified, parameterization ongoing	
Q2M: Complete feasibility study based on model + lab work, complete TMP	Model ongoing, lab experiment in preparation (construction, equip.)	
Q3M: Complete initial techn. development and numerical model improvements	Not yet started	
Q4M:Complete field tests and identify technology limitation and improvements needs	Not yet started	

14 | US DOE Geothermal Office eere.energy.gov

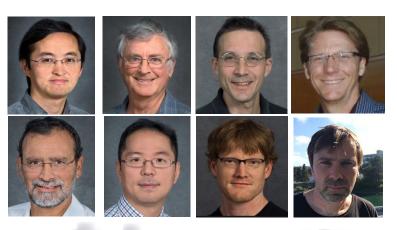
Research Collaboration and Technology Transfer

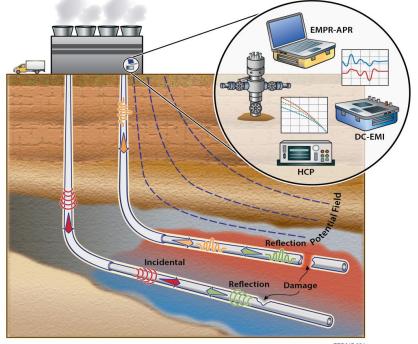
- Collaborating with Sandia lab (Chet Weiss) and their EM model capability for networked boreholes
- Working with CaMI Field Research Station to establish first field test site. Initial low frequency EM survey is underway
- Exploring wells at UCB Richmond Field Station (RFS), and Geyser geothermal field as future sites
- Halliburton and Chevron are collaborators on the project that can provide test wells and logging support in outer years
- Technology transfer to the private sector is planned for outer years.

Future Directions

Planned activities for FY18

- Finish technological feasibility evaluation
- Iterative laboratory studies modeling interactions to improve technology and model capability
- Conduct proof-of-concept demonstration at relatively simple fields
- Establish TMP and path forward


Outer year activities


- Controlled study to simulate casing corrosion/failure and associated signal under realistic conditions
- Model improvements to simulate corrosion failure under field conditions
- Deep, complex borehole field test
- Technology readiness progress and recommendations for path forward toward commercialization

Summary

- A very innovative approach that can disrupt the state-of-the-art
- First year focus on technology proof-of-concept
- An excellent team of experts with many years of experience in experiments, modeling and field work
- Project just started, but well underway
- Wide application and strong industry interests in the technology

