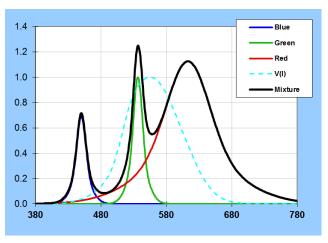
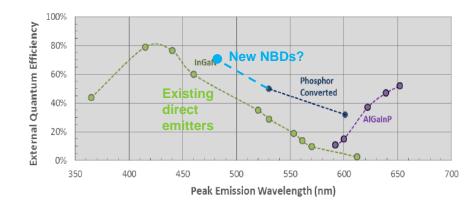


Narrow-band Spectra and Optics – Opportunities and Challenges

Paul Fini 11/8/17

Narrow-Band Spectra – High Efficacy

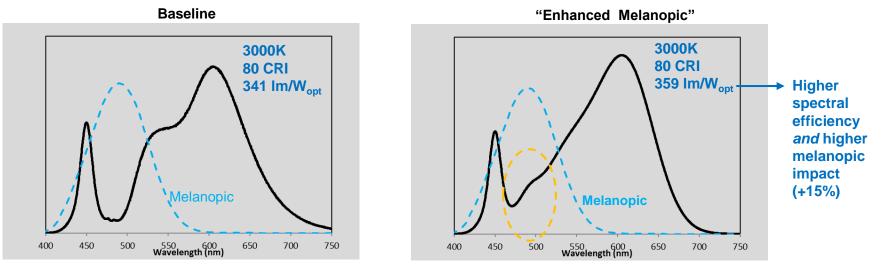

- Conventional all-phosphor spectra: broad red emission with long-red/near-IR tail
- Narrow (<35nm) red peak increases spectral efficiency by 10-20%
- Red direct emitters and narrow-band downconverters: spectral efficiency w/ differing tradeoffs.


Narrow-band red emission is valuable for high color quality at high efficacy, but may introduce system-level tradeoffs.

What About Narrow Green?

• Efficacy benefit: minimal compared to conventional green & red phosphors

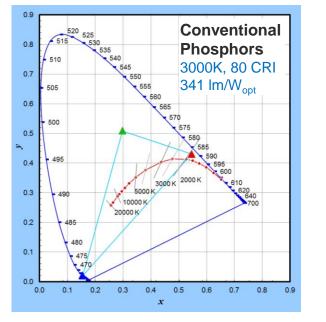
- Peaks are well within the eye response curve, thus minimal impact on efficacy (Im/W) with broad red peak.
- Narrow green and narrow red bumps efficacy by 5-7%, but at what color quality cost?

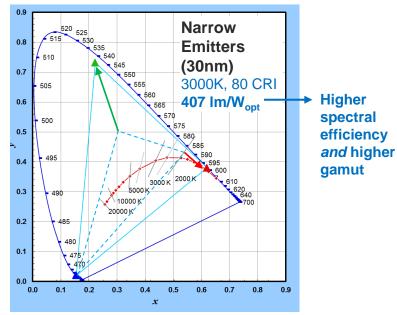


- Narrow green or cyan for emerging applications
 - Cyan NBDs (~480-500nm): melanopic impact
 - For >82% QY: higher EQE than direct cyan (~50%)

Spectral Engineering Beyond Efficacy

- Tailored narrow-band spectra may enable beneficial **physiological** or **psychological** responses.
- Example: spectra with "low" and "high" impact on melanopic eye response (cyan curve)

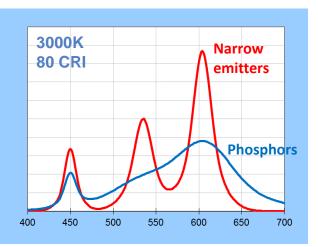


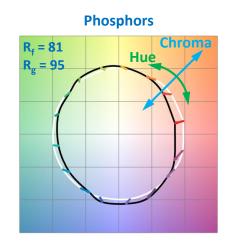

- Opportunity: define metrics such as "melanopic/W" while evaluating impact on Im/W, lux/W, & color quality.
- New spectra will depend on the development of new efficient and reliable narrow-band (<40nm) emitters and downconverters from cyan through red.

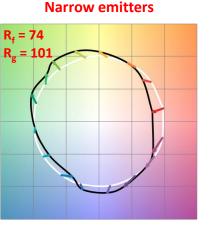
CREE \Rightarrow

Narrow-band Spectra – High-gamut Color Tuning

• Narrow emitters enable a wider **color tuning gamut**, with high spectral efficiency on or near the blackbody locus.




- Challenges:
 - Color tuning: requires investment in multi-driver control... this is now happening
 - Fixture-to-fixture color consistency: requires careful color point and intensity binning



Color Quality – Beyond CRI

- So far spectra have been optimized for CRI R_a and R₉.
- IES TM-30: quantifies color qualities beyond fidelity
 - Fidelity metric R_f "penalizes" peaky/structured spectra
 - R_f can't be "gamed" as easily as CRI R_a
 - Gamut metric R_g quantifies <u>averaged</u> enhanced gamut; R_{cs,hj} sub-metrics tell where it's happening

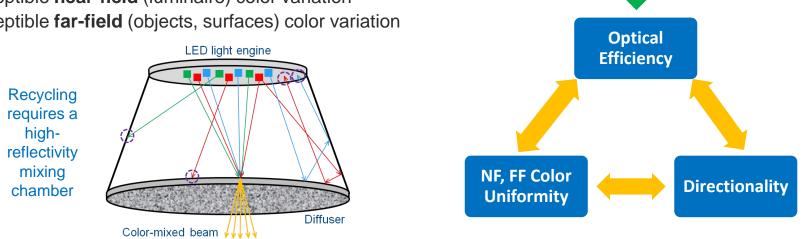
> Color quality measures beyond CRI $R_a \& R_g$ should be assessed when specifying new spectra.

Luminaire Optics: Present vs. Future

- SSL luminaire optics: designs evolving rapidly
 - Improvements via "non-legacy" form factors
 - Challenges still present in legacy form factors

Optical Efficiency: 5-10% gains will be challenging

Properties and effiacies of white light production and		Present	Future (Targets)			
direction by luminaire, then of use by end user	Units	2015	2018	2020	2025	Goal
Driver efficiency	%	0.88	0.91	0.93	0.95	0.95
Package efficacy (at 25°C)	lm/W	137	175	208	237	255
Thermal efficiency droop	%	0.88	0.91	0.93	0.95	0.95
Fixture (optical) efficiency	%	0.90	0.92	0.94	0.95	0.95
Luminaire Efficacy of White Light Production/Direction	lm/W	95	133	169	203	218


Note: these are 'best case', not average, efficiencies.

> Optical efficiency is just part of the equation!

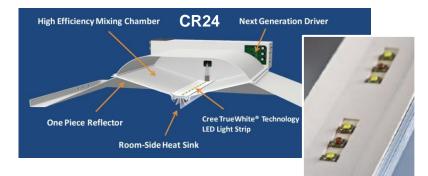
Illuminance & color uniformity, glare, utilization efficiency, & cost all matter.

System-level Color Mixing Tradeoffs

- **Discrete narrow emitters** require adequate color mixing prior to emission from the luminaire.
- Challenges:
 - Color over angle, particularly for directional emission
 - Color mixing at sufficient optical efficiency
 - Perceptible near-field (luminaire) color variation
 - Perceptible far-field (objects, surfaces) color variation

> Achieving efficiency, uniformity, and directionality is a key challenge in SSL optical design.

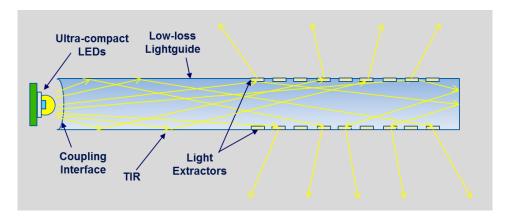


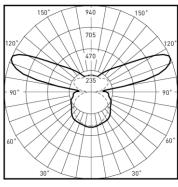

Application

Requirements

Color Mixing: Old vs. New School

- Opportunity: color mixing of discrete emitters for enhanced efficacy and color point tuning
- "Old School": mixing chambers with diffusers
 - Largely limited to ~Lambertian emission
 - Needs very low absorption mixing chamber
 - Adequate size/shape needed
- "New School": refractive + light-guiding optics?
 - Could rely (at least in part) on lossless TIR
 - Could enable low-profile form factors and cost reduction



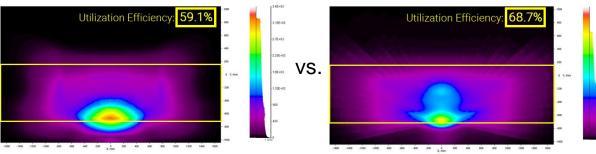

CREE ≙

New Optics Designs - Lightguides

Lightguides: should effectively couple LED emission, convey light with little/no loss, and efficiently extract (not just scatter!) light

LN4: "asymmetrical to diffuse" (using ceiling as optical element)

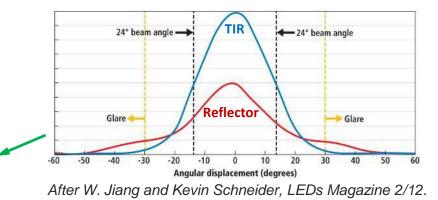
90


---- 0°

- LEDs: compact size & high luminance
- · Lightguide: low bulk absorption, smooth surfaces, mechanically stable
- Extractors: maximize first-pass extraction

More Considerations: Utilization Efficiency, Glare

Utilization Efficiency:



Outdoor: some distributions well defined by guidelines. Indoor: lux level guidelines used, but distributions "TBD"

Opportunities for application-optimized optics

- Optical trade-offs requiring innovation:
 - Low glare vs. high optical efficiency
 - Far-field illuminance vs. color uniformity
 - Aesthetic vs. functional/geometric limitations

TIR optic had parity Im/W but ~2x Ix/W and reduced (by ~4x) high-angle glare

Summary

- Narrow-band emitters and downconverters: promising efficacy and application-optimized spectral gains
- Efficacy
 - Opportunity: superior spectral efficiency
 - Challenge: significant improvements needed in materials efficiency and reliability from cyan to red

Color quality

- Opportunity: application-optimized color quality
- Challenge: controls for optimized performance and application values

Optics design

- *Opportunity*: new aesthetics, better light utilization & new application values
- Challenge: mitigate tradeoffs among efficiency; color mixing; uniformity; glare; ...

