

## Fuel Cell Buses in the U.S. Status, Progress and Opportunities

Sunita Satyapal – Director, Fuel Cell Technologies Office, U.S. DOE

North American Fuel Cell Bus Conference

Canton, OH–November 2 – 3, 2017



## **Market Growth**

## **2016 Global Shipments – Trends**



### Total power (in MW) shipped by fuel cell chemistry











Source: DOE Fuel Cell Technologies Market Report. Available at: https://energy.gov/eere/fuelcells/market-analysis-reports

## Other Heavy Duty Vehicle Applications Emerging





### **Market Segmentation Analysis- DOE Study Underway**

### FCEV costs: favorable in larger size classes and higher driving range

### **Year 2040: FCEV minus PEV-X Cost**

|                         | 50 mi.  | 100 mi. | 150 mi. | 200 mi. | 250 mi. | 300 mi. | 350 mi. |
|-------------------------|---------|---------|---------|---------|---------|---------|---------|
| Two-seaters             | \$0.04  | \$0.00  | -\$0.04 | -\$0.07 | -\$0.11 | -\$0.15 | -\$0.19 |
| Minicompacts            | \$0.05  | \$0.02  | -\$0.01 | -\$0.04 | -\$0.07 | -\$0.10 | -\$0.13 |
| Subcompacts             | \$0.04  | \$0.01  | -\$0.02 | -\$0.04 | -\$0.08 | -\$0.11 | -\$0.14 |
| Compacts                | \$0.03  | \$0.00  | -\$0.03 | -\$0.06 | -\$0.09 | -\$0.12 | -\$0.15 |
| Midsize Cars            | \$0.03  | \$0.00  | -\$0.04 | -\$0.06 | -\$0.10 | -\$0.13 | -\$0.17 |
| Large Cars              | \$0.03  | \$0.00  | -\$0.03 | -\$0.06 | -\$0.09 | -\$0.12 | -\$0.16 |
| Small Station<br>Wagons | -\$0.01 | \$0.00  | -\$0.04 | -\$0.06 | -\$0.11 | -\$0.15 | -\$0.19 |
| Pass Van                | \$0.03  | -\$0.01 | -\$0.06 | -\$0.11 | -\$0.15 | -\$0.20 | -\$0.24 |
| SUV                     | \$0.02  | -\$0.03 | -\$0.09 | -\$0.14 | -\$0.19 | -\$0.25 | -\$0.30 |
| Std Pickup              | \$0.14  | \$0.10  | \$0.07  | \$0.04  | \$0.01  | -\$0.03 | -\$0.06 |
| Small Pickup            | \$0.06  | \$0.01  | -\$0.03 | -\$0.07 | -\$0.11 | -\$0.15 | -\$0.19 |

# What can we learn from history?

# Henry Ford's Quadricycle in 1896 to Model T in 1908



## FORD CARS

1909 MODELS

The enormous demand for the new 4-cylinder Model "T" touring car makes it impossible for us to get these cars on short notice; deliveries will be made strictly in the order given. If you want one of these cars, see us soon.

\$850 f. o. b. factory

Colorado Auto Supply Co.
Distributers
8-10 E. BIJOU STREET

Three or four splendid secondhand cars for sale cheap.



## **Cost Projections for Bus Fuel Cell Systems**





Source: DOE FCTO project: SA

### **Fuel Cell Costs for Buses**

## **System Total Cost**

(200 systems/yr.)



Fuel Cell Stack Cost: \$54K

**BOP Cost: \$16K** 



## High-Volume Fuel Cell System Total Cost

(1000 systems/yr.)



Fuel Cell Stack Cost: \$31K

BOP Cost: \$12K

Source: DOE FCTO project: SA Cost Analysis- 2016 Update

## **Analysis for H<sub>2</sub> Storage System for Buses**

## Cryo-Compressed Potential: Same Driving Range at Lower Cost, Weight & Volume

|                                                  | Cryo-compressed* (future)                    | Ambient* (current)                          |  |
|--------------------------------------------------|----------------------------------------------|---------------------------------------------|--|
| Storage pressure                                 | 500 bar                                      | 350 bar                                     |  |
| System Cost @ 5K systems/yr.                     | ~\$12/kWh (~\$16K total)**                   | ~\$14/KWh (~\$19K total)                    |  |
| Amount of H <sub>2</sub>                         | 4 tanks x 10 kg H <sub>2</sub> (40 kg total) | 8 tanks x 5 kg H <sub>2</sub> (40 kg total) |  |
| Liner                                            | 2-mm SS                                      | 7.1-mm Al                                   |  |
| Storage Temperature                              | 72 K                                         | 288 K                                       |  |
| H <sub>2</sub> Storage Density (H <sub>2</sub> ) | 75 g/L                                       | 24 g/L                                      |  |
| Usable Hydrogen                                  | 95%                                          | 96%                                         |  |
| Gravimetric Capacity                             | 8.4% (~500 kg total)                         | 4.4% (~900 kg total)                        |  |
| Volumetric Capacity                              | 50.8 g/L (~800 L total)                      | 18.5 g/L (~2200 L total)                    |  |
| Amount of CF Composite                           | 4 tanks x 54 kg CF (~215 kg total)           | 8 tanks x 50 kg CF (~400 kg total)          |  |
| Dormancy (95% Full)                              | 3.6 days                                     | NA                                          |  |
| Dormancy (75% Full)                              | 15 days                                      | NA                                          |  |
| Dormancy (60% Full)                              | 24 days                                      | NA                                          |  |

<sup>\*</sup>Source: DOE, ANL, Strategic Analysis (SA)

<sup>\*\*</sup>Based on preliminary results from SA

## Fuel Cell Bus 2017 Status vs. DOE-DOT Targets

|                                           | Fleet<br>Avg. | Fleet<br>Max. | 2016<br>Target | Ultimate<br>Target | Target Met |
|-------------------------------------------|---------------|---------------|----------------|--------------------|------------|
| Bus lifetime (years)                      | 4.9           | 7             | 12             | 12                 |            |
| Bus lifetime (miles)                      | 131,963       | 189,168       | 500,000        | 500,000            |            |
| Powerplant lifetime <sup>a</sup> (hours*) | 14,309        | 25,395        | 18,000         | 25,000             | <b>⊗</b>   |
| Bus availability (%)                      | 75            | 93            | 85             | 90                 |            |
| Roadcall frequency <sup>b</sup> (bus)     | 4,649         |               | 3,500          | 4,000              | <b>⊘</b>   |
| Roadcall frequency (fuel cell system)     | 21,741        |               | 15,000         | 20,000             | <b>⋖</b>   |
| Maintenance cost (\$/mi)                  | 1.20          | 2.42          | 0.75           | 0.40               |            |
| Fuel economy (mpdge) <sup>c</sup>         | 7.01          | 7.82          | 8              | 8                  |            |
| Range (miles)d                            | 300           | 357           | 300            | 300                | <b>⊗</b>   |

<sup>&</sup>lt;sup>a</sup> Fuel cell hours accumulated to date from newest FCPP to oldest FCPP. Does not indicate end of life.

**Source: 2017 NREL Bus Report** 

\*Hours not met by all buses

<sup>&</sup>lt;sup>b</sup> MBRC: average for current designs.

<sup>&</sup>lt;sup>c</sup> Miles per diesel gallon equivalent

<sup>&</sup>lt;sup>d</sup> Estimated range based on fuel economy and 95% tank capacity.

## H2@Scale Energy System

## H<sub>2</sub> at Scale Energy System



## **Hydrogen Station Rollout Modeling - Example**

### NREL's Station Rollout Scenario Analysis in support of H<sub>2</sub>USA







**Station Expansion Network** 

Source: Marc Melaina, et al, NREL

1,000,000

2,000,000 3,000,000 4,000,000

## **H2@Scale: Nationwide Resource Assessment**



Labs assess
resource
availability. Most
regions have
sufficient
resources.

Red: Only regions where projected industrial & transportation demand exceeds supply.

Lab Pls: Mark Ruth, Bryan Pivovar, Richard Boardman, et al

## **U.S. Transit Buses by Fuel Type**

### **Electric and Hybrid: Fastest Growing**



U.S. DEPARTMENT OF ENERGY

## Fuel Cell Buses in the U.S. - Examples



## Collaborations and Resources

## **H2@Scale partnerships with labs**

- To leverage lab capabilities and expertise to address challenges- materials R&D, analysis, safety R&D, etc.
- Round 1 closed Sept. 15 stay tuned for winners and future rounds



CRADA = Cooperative Research and Development Agreement SPP- Strategic Partnership Project ('Work for Others')

## Hydrogen Fueling Infrastructure Research & Station Technology (H2FIRST)

### Addressing problems with hydrogen stations



H<sub>2</sub>FIRST (SNL & NREL)

### **Enabling Supply Chain – Resources**

### **Network of Four Regional Technical Exchange Centers**

- Mid-West Ohio Fuel Cell Coalition
- Rocky Mountain National Renewable Energy Laboratory
- East-Coast Connecticut Center for Advanced Technology
- West Coast National Fuel Research Center (UC Irvine)



## Online Database of U.S. suppliers and integrators



Connect at

**HFCnexus.com** 

Over 300 companies included

## **H2Tools: One-stop for H2 safety knowledge**





- Includes resources on safety best practices, first responder training, and H<sub>2</sub> codes & standards
- Site visit tracking shows a global reach:
   50% of visits are international!
- Nearing 150,000 visits since 2015
- Training resource translated into
   Japanese and other languages underway

## Ways to Spread the Word

# Celebrate Hydrogen & Fuel Cell Day October 8 or 10/8

(Held on its very own atomic- weight-day)



Learn more: energy.gov/eere/fuelcells

Give an "Increase your H2IQ" presentation in your community!



Download for free at: energy.gov/eere/fuelcells/downloads /increase-your-h2iq-training-resource



## Summary

U.S. DEPARTMENT OF ENERGY

## Enable early R&D innovation

- **Hydrogen fuel**
- Fuel cells
- H2@Scale

## Leverage activities to maximize impact

- **Enable infrastructure and cross-sector impacts**
- Partnerships--other agencies, industry, states, etc.
- Collaboration on safety R&D and information sharing

## Thank You

Dr. Sunita Satyapal
Director
Fuel Cell Technologies Office
Sunita.Satayapal@ee.doe.gov

energy.gov/eere/fuelcells