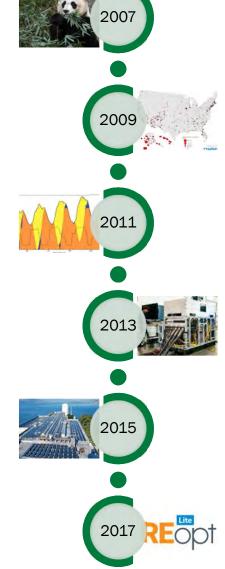


REopt Lite Beta Version Introduction to FEMP & NREL's New Web Tool

Rachel Shepherd, Federal Energy Management Program Emma Elgqvist, National Renewable Energy Laboratory


The REopt Model and It's History

FEMP uses REopt to help agencies screen and evaluate renewable energy opportunities and focus resources on projects that have economic and technical viability.

REopt has been used to assess opportunities at over 10,000 sites, REopt analyses have supported decisions that led to more than 260 MW of renewable energy development.

- US Forest Service
- National Park Service
- Fish and Wildlife Service
- Department of Defense
- Department of Energy
- Department of Commerce
- Department of State
- General Services Administration

- US Department of Veteran's Affairs
- Department of Homeland Security
- US Department of Agriculture
- US Bureau of Reclamation
- Bureau of Land Management
- Indian Health Service
- Western Area Power Administration
- Navajo Generating Station

Developing the REopt Lite Web Tool

<u>Mission</u> Provide access to a decision support tool for site-specific, optimized, and integrated analysis

Vision

Advance data-driven decision-making and deployment of renewable energy and energy storage technologies

REopt Lite: Sizing Solar+Storage for Savings and Resiliency

Emma Elgqvist¹, Rachel Shepherd²

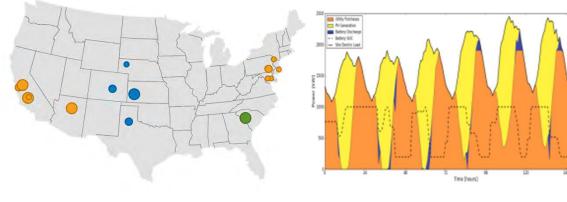
November 15, 2017

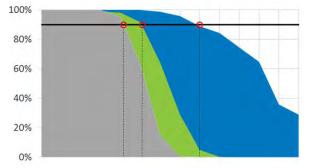
¹National Renewable Energy Laboratory ² Federal Energy Management Program

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

REopt: Decision Support Throughout the Energy Planning Process

Optimization • Integration • Automation




- Portfolio prioritization
- Cost to meet goals

- Technology types & sizes
- Optimal operating strategies

Cost-optimal Operating Strategy

- Microgrid dispatch
- Energy security evaluation

Extending Resiliency with RE

Cost-effective RE at Army bases

REopt Lite Web Tool

- Publicly available beta version of REopt Lite launched September 2017
- Evaluates the economics of grid-connected PV and battery storage at a site
- Allows building owners to identify the system sizes and battery dispatch strategy that minimize their life cycle cost of energy

	ect Your Techn nate PV, battery, or both?	ology	
E PV	🗩 Battery	() Both	
ep 2: Ente	er Your Data		

Enter information about your site and adjust the default values as needed to see your results.

St

SI

	Retail Store	* Type of building @
	116800	* Annual energy consumption (kWh) 📀
	Homer Electric Assn Inc: Industrial	* Electricity rate @
	URDB Rate Details	
C Reset to default values	Show more inputs	
0		
Ð		
· · · ·		
0		

Five Required Site Specific Inputs Additional Inputs Can Be Edited, Or Left As Defaults

		* Required field
* Site location @	Palmdale, CA, United States	
* Load profile 💡	 Simulated Custom Load Profile 	
* Type of building 😔	Retail Store	
🕏 Annual energy consumption (kWh) 🥹	500000	
* Electricity rate 💡	Southern California Edison Co: Time of Use, Geni	
	Show more inputs	CReset to default values
\$ Financial		G
PV		0
🛋 Battery		¢
Resilience		¢
		Get Results O
\$ Financial		4
	6.8%	
Host real discount rate (%) 🤤	S.O.B.	

Summary Results Include System Sizes and Savings

0

Results for Your Site

These results from REopt Lite summarize the economic viability of PV and battery storage at your site. You can edit your inputs to see how changes to your energy strategies affect the results.

G Edit Inputs

Your recommended solar installation size

Measured in kilowatts (kW) of direct current, this recommended size minimizes the life cycle cost of energy at your site.

Your recommended battery power and capacity

93 kW battery power 342 kWh battery capacity

This system size minimizes the life cycle cost of energy at your site. The battery power and capacity are optimized for economic performance.

Your potential life cycle savings (20 years)

This is the net present value of the savings (or costs if negative) realized by the project based on the difference between the life cycle energy cost of doing business as usual compared to the optimal case.

\$238,450

?

0

Additional Results Output **Economics Summary and Hourly Dispatch Graph**

Download ProForma Spreadsheet

	Business As Usual 📀	Optimal Case 🛛	 Battery to Grid Battery Discharging PV Exporting to Grid PV Charging Battery
System Size, Energy Productio	on, and System Cost		400 kW
PV Size 😨	0 kW	392 kW	
Annualized PV Energy Production 💡	0 kWh	680,826 kWh	320 kw
Battery Power 💡	0 kW	93 kW	240 kw
Battery Capacity 💡	0 kWh	342 kWh	240 kw 160 kw
DG System Cost (Net CAPEX + O&M) 💿	\$0	\$526,342	
Energy Supplied From Grid in Year 1 💡	1,000,000 kWh	358,623 kWh	80 kW
Year 1 Utility Cost — I	Before Tax		o kw
Utility Energy Cost 🔞	\$118,263	\$34,216	10. Jun 11. Ju
Utility Demand Cost 🥥	\$40,008	\$18,623	
Utility Fixed Cost 💡	\$3,110	\$3,110	
Utility Minimum Cost Adder 🧿	\$0	\$0	400 kW
Life Cycle Utility Cost -	– After Tax		320 kW
Utility Energy Cost 💡	\$857,868	\$248,200	3 240 kW
Utility Demand Cost 💡	\$290,213	\$135,089	(Kilowa
Utility Fixed Cost 💡	\$22,562	\$22,562	160 kw
Utility Minimum Cost Adder 💡	\$0	\$0	80 kW
Total System and Life Cycle Util	lity Cost — After Tax		
Life Cycle Energy Cost 💡	\$1,170,644	\$932,194	0 kW 03:00 05:00
Net Present Value 💡	\$0	\$238,450	

PV Serving Load Grid Charging Battery Grid Serving Load

12:00

09:00

15:00

181

18:00

21:00

T3. Jun

.

40%

20%

096

03:00

FY18 REopt Lite Development Plan

Task	Description
API	Expose API and provide wiki to call model via API
Resiliency	 Expand resiliency analysis Build up a critical load profile based on equipment Model existing diesel and PV systems Design system based on probability of sustaining critical load Incorporate the value of lost load
User data storage	Allow user to retrieve and edit stored inputs for future analysis
Wind	Add wind technology, purchase license for wind dataset
Custom utility rate	Allow user to enter custom utility rate tariff
Report	Downloadable sensitivity analysis report and dispatch strategy
User resources	Training materials and case studies

REOPT Integration and Optimization

REopt Website https://reopt.nrel.gov/

Emma Elgqvist emma.elgqvist@nrel.gov

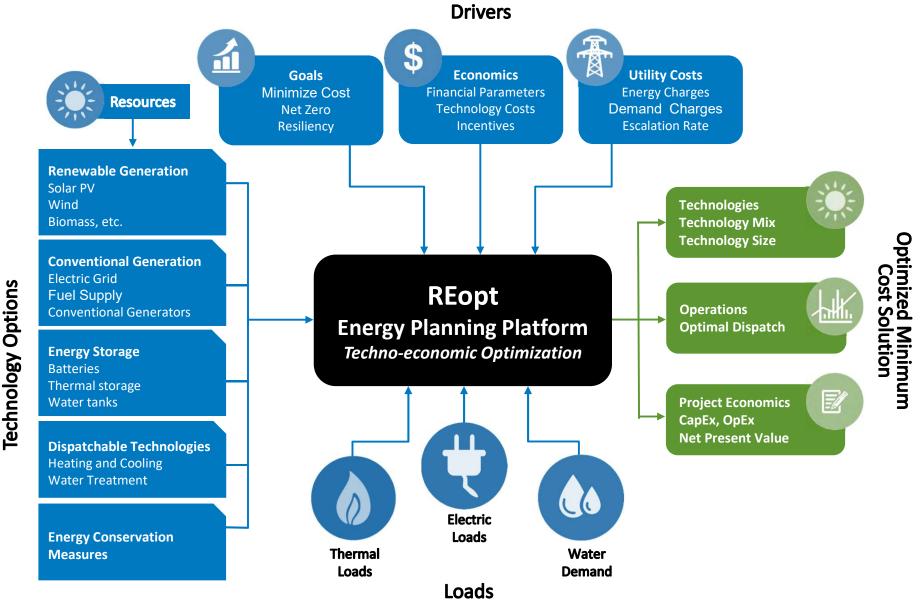
Rachel Shepherd <u>rachel.shepherd@ee.doe.gov</u>

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

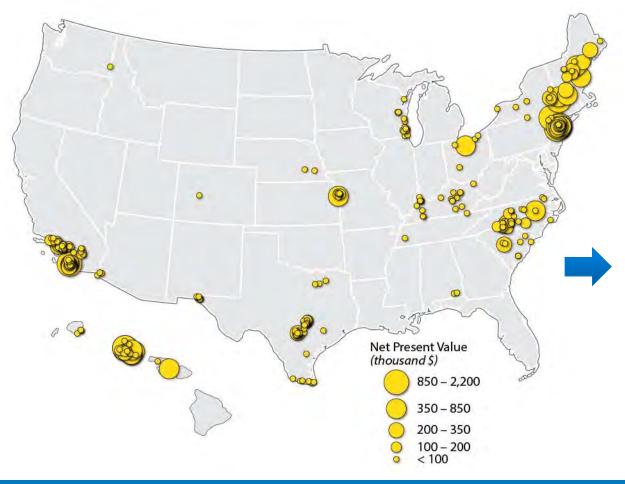
Backup Slides

- REopt website: https://reopt.nrel.gov/
- REopt Lite web tool: <u>https://reopt.nrel.gov/tool</u>
- REopt technical report: <u>https://www.nrel.gov/docs/fy17osti/70022.pdf</u>
- REopt fact sheet: <u>http://www.nrel.gov/docs/fy14osti/62320.pdf</u>


REopt Platform vs. Web Tool Phase 1 **Capabilities**

	Current Platform Capabilities	Phase 1 Web Tool Capabilities
Technologies Evaluated	PV, SHW, SVP, Wind, Biomass, LFG, WTE, GSHP, Storage, Conventional reciprocating and combustion turbine generators	PV + Storage
Sites Evaluated	Multi-site	Single site
Load Types	Electric, thermal, interval data from actual load profiles or simulated from DOE commercial reference buildings, others for customized analysis	Electric only interval data or simulated from DOE commercial reference buildings
Rate Tariffs	Blended rates, simple rate tariffs, and custom rates entered by user	Rate tariffs selected from URDB
Resiliency Analysis	Simple outage analysis or complex stochastic outage modeling	Simple outage analysis

REopt Inputs and Output


REOD[†] Integration and
 Optimization

Project Example: Identifying & Prioritizing Projects across a Portfolio

REopt portfolio screening can help:

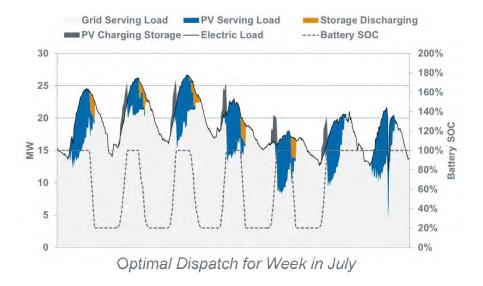
- Identify & prioritize cost-effective projects to minimize lifecycle cost of energy or achieve net zero
- Estimate cost of meeting renewable energy goals

Sites Evaluated	696
Cost-Effective PV	306
Size	38.79 MW
NPV	\$37 million
RE Generation	64.7 GWh
RE Penetration	10.5 %

Integration and Optimization

Project Example: PV + Battery Sizing

- Determine economically optimal PV + storage system size & dispatch using:
 - 15-minute electric load
 - Southern California Edison utility tariff TOU-8
- Results show 12.4 MW PV + 2.4 MW:3.7 MWh storage can provide \$19.3 million NPV
- Battery is only economical when paired with PV at this site due to wide peaks
- Optimal battery dispatch strategy • reduces all three demand charges



Jul

Aug

Savings from Demand Reduction

Jun

Facility Demand Savings Peak Demand Savings Part Peak Demand Savings

\$140

\$120

\$100

\$80

\$60

\$40

\$20

\$0

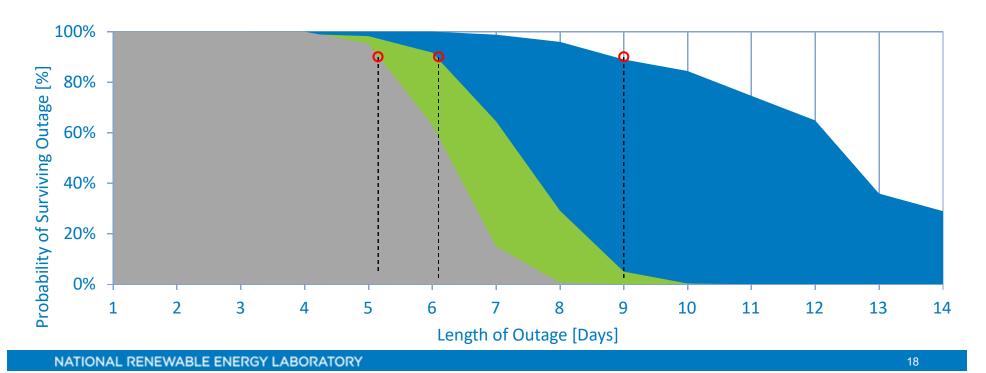
Jan

Feb

Mar

Apr

May


Savings (\$ Thousands)

Integration and

Project Example: Extending Survivability REODT Integration and Optimization

NREL evaluated thousands of random grid outages and durations throughout the year and compared number of hours the site could survive with a diesel generator and fixed fuel supply vs. generator augmented with PV and battery

	<u>Generator</u>	<u>Solar PV</u>	<u>Storage</u>	Lifecycle Cost	<u>Outage</u>
1. Base case	2.5 MW			- \$20 million	5 days
2. Lowest cost solution	2.5 MW	625 kW	175 kWł	1 \$19.5 million	6 days
3. Proposed system	2.5 MW	2 MW	500 kWł	s \$20 .1million	9 days

Simple Resiliency Evaluation

Simple Resiliency Inputs

Resilience		•
Outage start 😧		
Outage duration (hours) 😜		
Critical load factor 😔	50%	
		C Reset to default values

Simple Resiliency Outputs

Evaluate the amount of time that your system can survive grid outages.

	Business As Usual 😧	Optimal Case 🛛	Difference @
Average Resiliency (hours) 🥹	0 hours	3 hours	3 hours
Minimum Resiliency (hours) 🥹	0 hours	0 hours	0 hours
Maximum Resiliency (hours) 🥹	0 hours	21 hours	21 hours