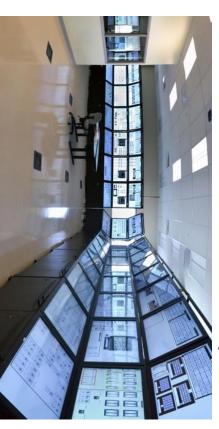
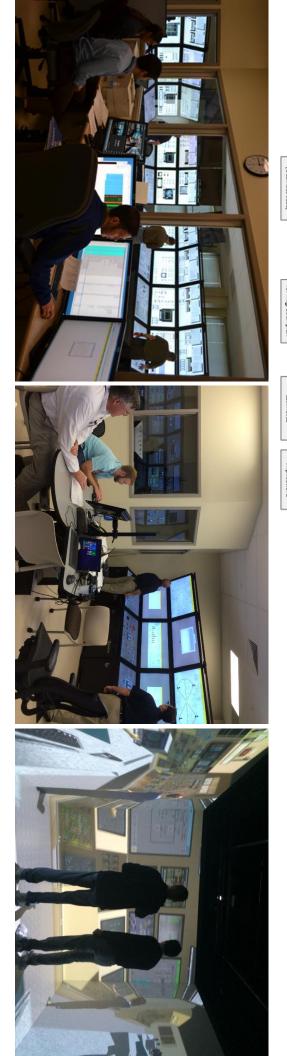
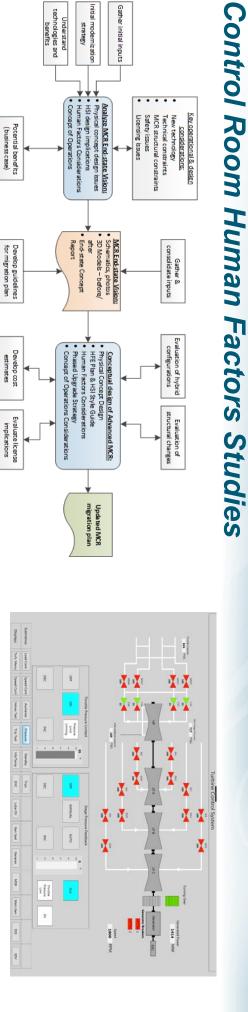

Advanced Sensors and Instrumentation Webinar 2017 NE I&C Review October 19, 2017 Ken Thomas Idaho National Laboratory

Control Room Modernization for Light Water Reactor Sustainability

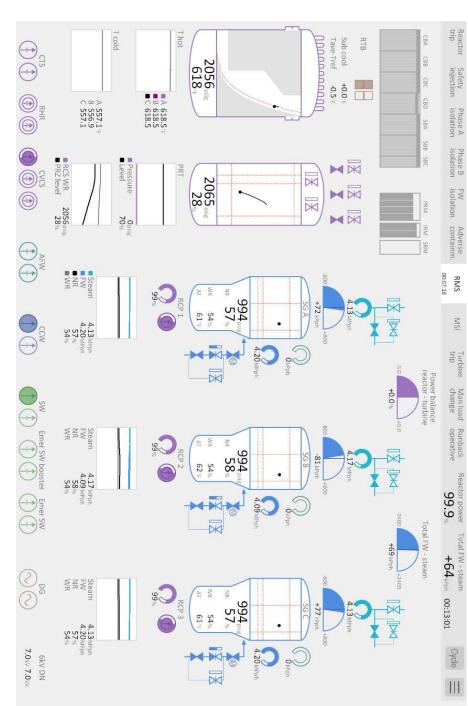

Department of Energy Light Water Reactor Sustainability Program

Idaho National


Idaho National Laboratory


Control Room Modernization

- Addresses obsolescence and reliability issues for the legacy I&C systems of the LWR fleet.
- I&C obsolescence is a potentially life-limiting issue for currently operating nuclear plants
- Enables significant business improvement through the implementation of new control room technologies improved operator performance and reduced O&M cost.
- technology, nuclear plant design and operational experience. Laboratory, Human Factors and Human Reliability staff, operator performance measurement II&C Pathway has unmatched resources to conduct this research: Human Systems Simulation
- Have major nuclear utilities as collaborators in this research partnering with the II&C Pathway to modernize their control rooms as they undertake digital upgrades for their I&C systems.



Idaho National Laboratory

Plant Overview Displays with Information-Rich Graphics

- Working with Halden Reactor Project
- Important Plant Parameters
- Exploit human capabilities to acquire information quickly
- Improve collective situation awareness
- Reduce operator workload to monitor the plant

Objective Performance Measurement - Eye Tracker Technology

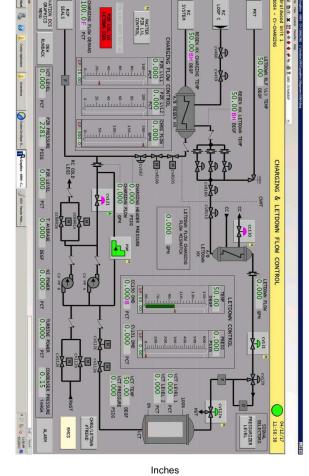
Methodologies Conform to NRC Regulatory Guidance

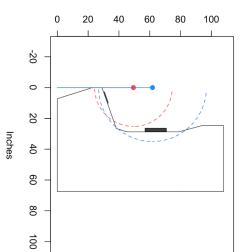
NRC NUREG-0711 & 0700

Planning and Analysis	Design	Verification and Validation
HFE Program Management		
Operating Experience		
Review	Human-System	
Function	Interface Design	
Allocation	Procedure Development	Human Factors Verification and
Task Analysis	Training	Validation
	Development	
Staffing & Qualification		
Treatment of Important		
Human Actions		

Idaho National Laboratory

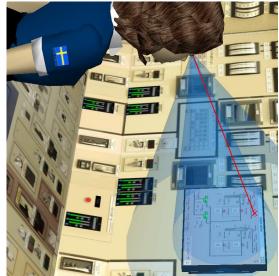
Evaluation Phase


Pre-Formative (Planning and Analysis ¹) [1] Design	Formative (Design ¹) [2] Heuristic
[1] Design Requirements Review	[2] Heuristic Evaluation
[5] Baseline Evaluation	[6] Usability Testing
[9] Cognitive	[10] Operator Feedback on

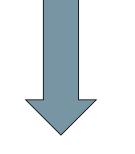

Evaluation Type

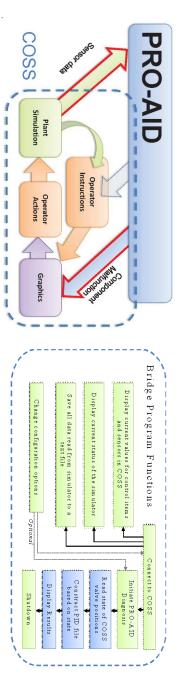
User Study (*Validation*) Expert Review (Verification)

Knowledge Elicitation (Epistemiation)

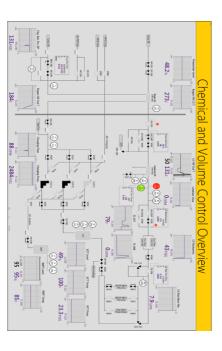


Reach: PM04J



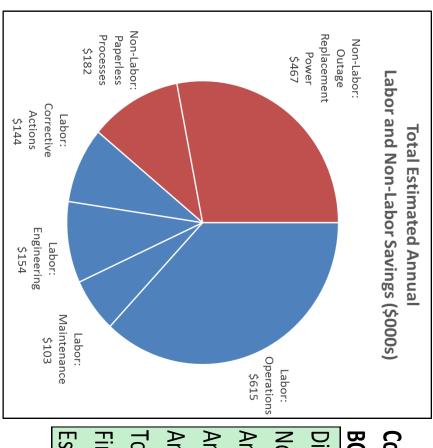


Idaho National Laboratory


Computerized Operator Support Systems

Collaborative Research between Argonne National Laboratory and Idaho National Laboratory

$$\begin{bmatrix} dQ_{max} \end{bmatrix} = \begin{bmatrix} dw_{m} \end{bmatrix} - \begin{bmatrix} dw_{m} \end{bmatrix} = \begin{bmatrix} dQ_{max} \end{bmatrix} = \begin{bmatrix} dQ_{ma$$



Control Room Modernization Business Case Development

Control Room Modernization

BCM Present Value

iscount Rate (Internal Rate of Return):		10%
lo. Years of Benefit:		15 years
nnual Benefit (Labor)	Ś	1.02 million
nnual Benefit (Non-Labor)	Ś	0.65 million
nnual Benefit (KPI)		n/a million
otal Annual Benefit:	Ş	1.66
irst Year Realized Benefit:		ω
stimated Net Zero NPV Investment:		\$10.46 million

For Additional Information

Idaho National Laboratory

Ken Thomas Idaho National Laboratory 919-909-5231 kenneth.thomas@inl.gov