
A Robust Wireless Communication System for Harsh Environments Including Nuclear Facilities

Faranak Nekoogar, Ph.D. Dirac Solutions Inc. Faranak@DiracSolutions.com

10/19/2017

Outline

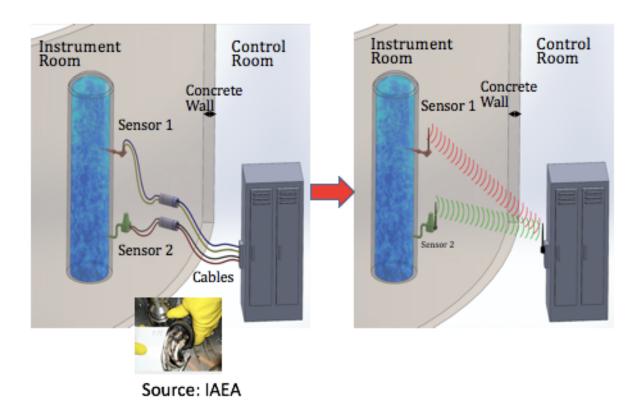
□ Project Overview

□ Background

□ Summary of Phase I accomplishments

□ SBIR Phase II tasks

□ Current SBIR Phase II progress

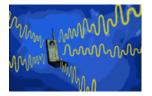

□ Conclusion and path forward

Project Overview

- Goal: Develop and evaluate a secure and reliable wireless sensor communications system to address the unique challenges of RF communications nuclear facilities
- Participant: Dirac Solutions Inc.
- Project: Phase II SBIR
- Schedule: 2 years (2018-2020)

Background - Wireless sensor communications improves I&C reliability and process efficiency in next generation reactors

- Cable integrity and maintenance is a major challenge in reliable sensor data reporting in current NPPs
- Nuclear reactors pose a hostile environment for RF signals
 - Lots of metal
 - Thick concrete walls
 - Liquids
 - Clutter
 - EMI from / or to other wireless systems
- Conventional wireless communications face significant limitations in reporting sensor data in NPPs

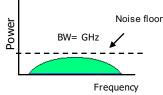


Objectives

 Based on the results from our Phase I software simulations, design considerations, and field experiments, in Phase II we plan to develop, field evaluate, and manufacture reliable wireless sensor communications system based on ultra-wideband (UWB) technology to address the concerns associated with the performance of conventional wireless technology in nuclear reactors.

Narrow RF pulses as building blocks for communications in UWB technology significantly differentiate their performance over conventional narrowband systems

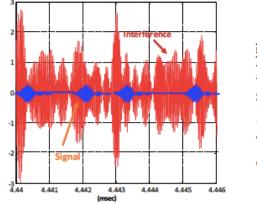
Traditional RF systems use Narrowband signaling (Continuous waveforms, with high power and narrow frequency band) to transmit/receive information.

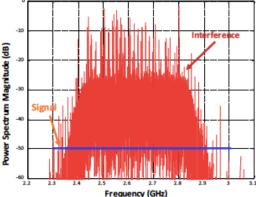

Frequency

Key disadvantages of narrowband signaling:

- Vulnerable to signal jamming and spoofing
- Limited penetrability in harsh environments
- Easy to detect
- ≻Low channel capacity (data rate)
- Low Precision
- Needs sophisticated encryption techniques
- Complex hardware architecture
- ➢Limitations in worldwide operation

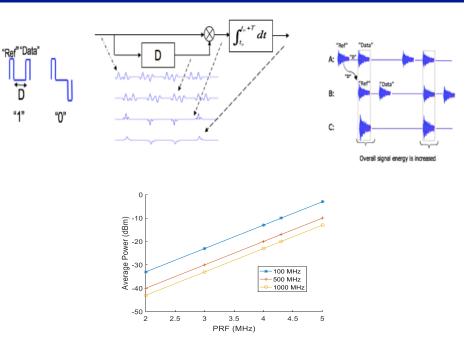
Ultra-wideband systems use narrow pulses (sub-nano second duration, with low power, ultra-wide frequency band) to transmit and receive information




Key advantages of UWB signaling are:

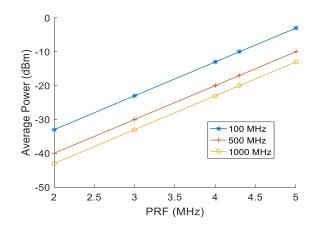
- Resistant to signal jamming and tampering
- Good penetration properties of signal in harsh environments
- Secure transmission by pulse coding
- >High channel capacity (data rate)
- Accurate ranging and geolocation
- Inherently encrypted by pulse coding
- Simple architecture small formfactor, low cost
- Unlicensed spectrum– Global operations

UWB RF signals offer unique advantages in sensor data reporting at NPPs

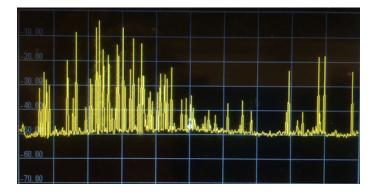

UWB Pulses are less sensitive to multipath phenomenon

 UWB pulses offer physical layer encryption and look like noise to other receivers

Phase I goal: Uniquely designed UWB pulses allow sensor communications in extremely harsh environments (i.e. behind closed metallic doors, or through tick walls) and offer data security


Summary of Phase I SBIR Accomplishments

- Developed a unique UWB modulation technique "Encrypted Transmitted-Reference (ETR)" with the following features:
 - Robust performance in reflective environments
 - Physical layer security
 - Asynchronous transmission
- Communications system analysis -Investigated the effects of EMI and interfering RF signal based on the following parameters:
 - Frequencies
 - Modulation
 - Bandwidth, pulse duration
- Conducted field experiments to characterize UWB signal transmission at MIT research reactor (MITR)



SBIR Phase I Accomplishments – Software simulations for UWB pulse design



Pulse Repetition Frequency Study

10⁻¹ 10

Pulse Integration Period Study

20

NPP Channel Modeling

0.5

0.01

0.005

0 -0.005

-0.01

-0.015

0

DSI experiments at MITR demonstrated great success for sensor data transmission in hostile RF environments

 Behind the First Wall (TX1)

 Packet # 545 | Node 5 | TX 10 883 | Temp 83.4 F | Light 79 1s

 Fine 00:05:04 | d1 00:00 | RSSI 13.3047 | Hustidity - 5 | Extrn] 3211 47

 Packet # 566 | Node 5 | TX 10 883 | Temp 83.4 F | Light 79 1s

 Fine 00:05:04 | d1 00:01 RSSI 15.3047 | Hustidity - 5 | Extrn] 3211 47

and the second second	A the	•	

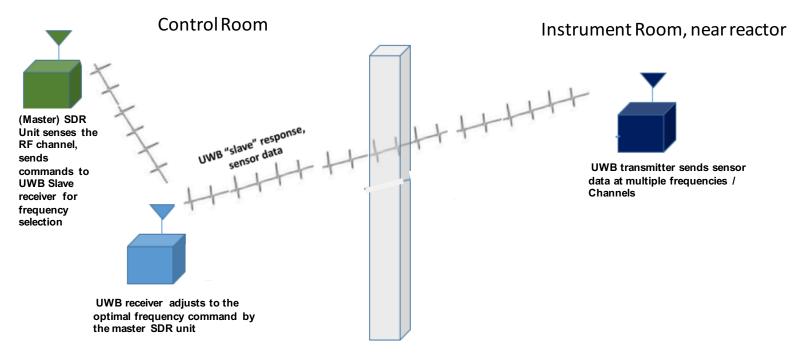
Packet # SG1 Hude S TX 1D HSS3 Tage B.2.2 F Light TS 1s Tage 00:05:05 if 00:00 iSS1 14.850 i Hundity 1 Extrn1 1220 eff Packet # SG3 if 00:00 iSS1 14.850 i Hundity 1 Extrn1 1220 eff Packet # SG3 if 00:00 iSS1 14.850 i Hundity 1 Extrn1 1220 eff Packet # SG3 if 00:00 iSS1 14.550 Hundity 1 Extrn1 1122 iff Packet # SG3 if 00:00 iSS1 13.550 Hunitity 3 Extrn1 1122 iff Packet # S78 Made S IX 1D Tage 83.2 F Light T5 is Isse 00:05:06 iff 00:00 iSS1 12.420 Hunitity 3 Extrn1 1122 eff Packet # S77 Made S IX 1D Tage 83.2 F Light T5 is Isse 00:05:00 if 00:01 ISS1 113.560			tores an access	Linearch of Points Service
Packet # S43 F Mode S TX 1D B83 Temp B3.2 F Light T9 1s Fine 00:05:06 if # 00:00 #853 13.584# Houridity	Packet # 567 Time 00:85:05	Node 5 d1 00:00	TX 10 483 RSSI 14.83wW	Temp 83.2 F Light 75 1= Humidity 5 Extrn] 1220 mT
Packet # STM Nude S TX 1D Temp 83.2 F Light TS 1s Time 00:05:06 # 01:00:00 HSSI 12.42aH Humidity 5 ExtraClassical Humidity	Packet # 568 Time 00:05:05	Kode S d1 00:00	TX TD #83 R881 14.55eW	Temp 83.2 F Light 75 lm Humidity % Extrnl 1892 ml
Packet # 571 Nude 5 TX ID 883 Temp 83.2 F Light 75 hs Fine 00:05:00 d1 00:01 RSSI 11.86eV Humidity - 5 Extral 1144 eff	Packet # 563 Time 00:05:06	Node 5 d1 00:00	TX ID #83 RSSI 13.58wW	Temp 83.2 F Light 79 lm Humidity 5 Extrnl 1121 ml
	Packet # 578 Time 00:05:06	Kode 5 d1 00:00	TX TD RSSI 12.42wV	Temp = 83.2 F Light = 75 lm Humidity 5 Extrn] 1226 mT
Packet # 572 Nude 5 TX 10 883 Temp 83.2 F Light 79 s Time 00:05:07 41 80:00 RSE1 7.73wV Humidity - 5 Extral 1147 aV	Packet # 571 Time 00:05:07	Node 5 d1 00:01	TX 1D #83 RSSI 11.86eW	Temp 83.2 F Light 75 lm Humidity 5 Estrol 1044 mH
	Packet # 572 Time 00:05:07	Node 5 d1 00:00	TX TD #83 RSSI 7.73wV	Temp 83.2 F Light 79 ls Humidity % Extrnl 1147 ml

10 ft beyond second Wall (TX2)

Packet # 41	Node 5 1X	10 883	lenç 85.6 F	Light lx	
Time 80:91:30	d1 00:83 RS	Sl 1.51wi	funidity 3	Extral 997 mV	
Packet # _ &2	Mode 6 TX	10 883 1	lenç 85.0 F	Light 11 lx	
Time #0:45:\$0	d1 00:07 RS	\$1 1.63ml	Numidîty 3	Extral 1205 wV	
Packet # 43	Mode 5 TX	10 803	leno 85.5 F	Light lx	
Time 00:01:32	dT 00:02 RS	\$1 2.46wi	Runidity 1	Extral 100 w	
Packet # 44	Mode 5 18	10 883	leno 85.5 F	Light lx	
Time 00:01:25	dT 00:03 RS	SI 1.63mV	funcidity 1	Extral 1121 w	
Packet I 45	Node 6 18	10 883 1	leno 85.2 Fi	Light 11 lx	
Time 80:01:37	d1 00:07 18	SI 1.53wi	funcidity 1 I	Extral 1180 wV	
Packet # 46	Mode 5 1X	10 801	leno 85.7 F	Light lix	
Time 80:01:40	d1 00:85 85	\$1 2.06w	Tunidity 3	Extral 1141 w	
Packet # - 47	Mode 5 TX	10 883	leno 85.7 F	Light lx	
Time 00:01:42	dT 90:02 RS	\$1 1.85wi	Runidilty 1	Extral JKS w	
Packet # 48	Made 5 TE	10 883	leno 85.7 Fi	Light lx	
Time 80:01:46	dT 00:03 RS	1.85mW	funcidity1. [Extral 1127 mV	

Equipment Room

Behind heat exchanger (titanium), 3 walls (2 walls are shielded with steel), at the door in control room (TX3)

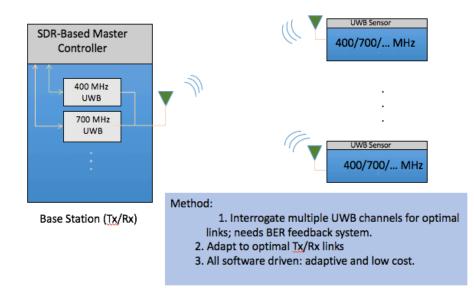

acket # 130 Time 00:12:16	Note 5 d1 00.00	l	TX 10 000 R881 38.16mW		leap 86.9 F Light 1x Bunidity 5 Edral 919 aV
Packet # 171 Time 80:12:17	Node 5 cli 80:01		13 13 083 RSSI 19.86aW		Temp 86.9 F Light lx Bunidity % Extral 985 aV
Packet # 172 Time 80:12:17	Node 5 cli£0:08		1X 10 RSSI 13.16mW		Temp 86.9 F Light lx Bunidity 5 Extral 1165 aV
Packet # 173 Time #0:12:18	Note 5 di 60:00	i	TX 10 083 RSSI 19.86aW	l	lemp 86.9 F Light lx Bunidity 5 Extral 1055 eV
Packet # 134 Time #0:12:18	Node 5 d1 00:09	l	TX 10 003 RSSI 18.16mW		lemp 86.9 F Light 1x Bunidity X Extral 3029 aV
Packet # 175 Time #0:12:19	Note 5 cli 88.81		TX 10 080 RSS1 5.48mW		lemp 86.9 F Light lx Bunidity % Extral 1141 aV
Packet # 136 Time 80:12:20	Node 5 cli 89:00		TX 10 083 HSS1 4.46mW		lamp 86.9 F Light lx Bunidity 5 Extral 1240 aV
Packet # 177 Time 80:12:22	Node 5 cli 80:02		TX 10 083 RSS1 0.56mW		Temp 87.1 F Light lx Bunidity X Extral 1115 wV

Phase I Outcomes for wireless communications design parameters

Communications Parameter				
Frequency (MHz)	400	700	900	
Pulse Duration (ns)	30	20	10	
Pulse Repetition Frequency	om 10 KHz t	o 100 KHz		
Delay between pulses	Adjustable fro 5 ns to 30 ns			

Phase II SBIR Plan

Develop a secure and reliable UWB communications system based on Phase I simulation studies and field experiments in a software-defined- radio (SDR) that can adapt it's communications parameters to the dynamic environment of various nuclear reactor facilities



Phase II SBIR Tasks (Two years)

- Develop hardware for SDR master unit to sense the RF channel for best communication frequency selection
- Develop hardware for multiple UWB pulsers at various frequencies (400 MHz, 700 MHz, 900 MHz)
- Develop UWB transmitters and receivers with self adapting frequency adjustment capability
- □ Integrate sensors (temperature, humidity, radiation) with the adaptive transmitter unit
- $\hfill\square$ Laboratory and field testing of the hardware
 - □ MIT research reactor
 - □ Testbed at ORNL Technical Testing and Analysis Center (DSI internally funded CRADA)
- Fully functional integrated hardware software for a UWB SDR communications system that can adapt it's communications parameters to the operating environments
- □ Low volume manufacturing

Phase II SBIR Current accomplishments

- □ Currently working on software development for SDR master unit to sense the channel using commercially available USRP SDR platform
- In process of developing pulser circtuit boards with multiple frequencies including 400 MHz, 700 MHz, 900 MHz
- Design of switch circuitry for adaptive frequency selection

Conclusions and Path Forward

□ The secure UWB sensor communications allows for:

- Eliminating cables, reducing the risk of unpredictable cable health and time consuming maintenance, lower cost, improved reliability,
- Modernization of next generation nuclear reactors, allowing modular reactors to benefit from reliable wireless technology
- Published a conference paper and a journal paper

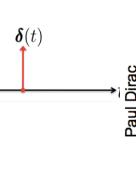
□ Path forward includes:

- Fully develop the required hardware and software for field deployments
- Extensive laboratory and field tests for performance evaluations and refinements
 - MITR, ORNL, and more
- Small scale manufacturing
- Large scale manufacturing and introducing the UWB wireless communications systems to nuclear reactor operation facilities (Phase III)

About Dirac Solutions Inc. (DSI)

Dirac Solutions Inc. is a small business located in Pleasanton, CA with core expertise in Ultra-wideband Communications/RADAR, as well as Active and Passive RF tagging/tracking.

□ A spin-off from Lawrence Livermore National Laboratory


□ Extensive R&D program (DOE, NSF, DOD, DHS)

Growing products lines for national security applications in collaborations with national laboratories and industry

□ DSI was the recipient of the "2016 DOE Small Business of the Year award"

