

Office Of Nuclear Energy Sensors and Instrumentation Annual Review Meeting

Development and Demonstration of a Model Based Assessment Process for Qualification of Embedded Digital Devices in Nuclear Power Applications

> Carol Smidts The Ohio State University NEET Project No.: 15-8097

> > October 18-19, 2017

Project Overview

Nuclear Energy

Project Goal

 Develop an effective approach to resolve concerns about common-cause failure (CCF) vulnerabilities in embedded digital devices (EDDs)

Focus

 Address the challenge of establishing high levels of safety and reliability assurance for EDDs that are subject to software design faults, complex failure modes, and CCF

Project Overview (cont)

Nuclear Energy

Objectives

- Assess the regulatory context for treatment of CCF vulnerability in EDDs
- Define a classification scheme for EDDs to characterize their functional impact and facilitate a graded approach to their qualification
- Develop and extend model-based testing methods to enable effective demonstration of whether devices are subject to CCF
- Establish a cost-effective testing framework that incorporates automation and test scenario prioritization
- Demonstrate the qualification approach through selection and testing of candidate digital device(s)

THE UNIVERSITY OF

NESSEE

Project Participants

Nuclear Energy

The Ohio State University

Participants

- The University of Tennessee (Richard Wood, Tanner Jacobi, Dan Floyd)
 - Assessment of regulatory requirements, classification of embedded digital devices, development of qualification approach.
- The Ohio State University (Boyuan Li, Carol Smidts)
 - Development of a generalized model-based mutation approach, prioritization of test cases, and automation of testing.
- Virginia Commonwealth University (Carl Elks, Tim Bakker Frederick Derenthal)
 - Development of model formalisms that can be used to derive effective test cases and application of fault injection techniques to extend test capabilities
- Analysis and Measurement Services Corporation (Brent Shumaker, Hashem Hashemian, Alex Hashemian)
 - Experimental assessment of the developed approach.

Milestones Completed

Nuclear Energy

M2CA-15-TN-UTK_-0703-034

Develop classification approach for embedded digital devices (April 30, 2017)

M3CA-15-TN-UTK_-0703-035

• Select representative embedded digital device for testing and demonstration (June 30, 2017)

M2CA-15-TN-UTK_-0703-036

• Develop extended model-based testing methodology with integration and automation principles (September 15, 2017)

M2CA-15-TN-UTK_-0703-037

 Second Annual Progress Report on Development and Demonstration of a Model Based Assessment Process for Qualification of Embedded Digital Devices in Nuclear Power Applications (September 30, 2017)

Accomplishments

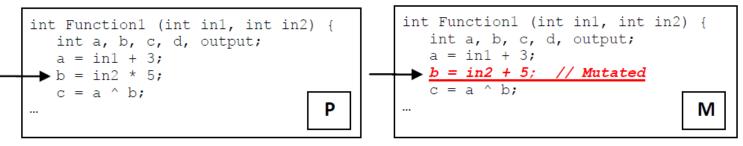
Embedded Digital Devices Classification

Nuclear Energy

Embedded Digital Devices Classification

- Developed a classification framework for equipment with an EDD based on the functional roles allocated to the digital devices and the impact of their failure on the primary function of the equipment/instrument
- Devised an analysis approach that extends the customary D3 analysis to account for the significance and functional impact of potential failures of an EDD and to enable a graded analysis approach based on classification of EDDs

Accomplishments Development of model-based testing framework


Nuclear Energy

Developed an automation method for the extended mutation testing framework in the requirements and design phase

- Devising an automation strategy for mutant generation
- Devising an automation method for mutant execution
- Devising an automation method for mutant identification
- Devising an automation method for test cases generation
- Devising a prioritization method for mutant selection

Mutation Testing Introduction

- Mutation testing generates an effective test set.
- Mutation testing manipulates source code to generate mutants.
- An adequate test suite is able to distinguish all mutants

Development of model-based testing framework

Nuclear Energy

Extension of traditional mutation testing to Requirements and Design level

- Traditional mutation testing focuses on the software code level and does not address requirements and design faults
- To cover the full spectrum of possible faults, it is necessary to extend the mutation framework from coding faults to requirements and design faults.
 - Identification and classification of defects introduced in the requirements and design phase
 - Development of mutation operators for each defect category
 - Quantification of the number of mutants for each mutation operator
 - Preliminary development of a cost reduction strategy for each mutation operator
- A large quantity of mutants is generated for testing. To implement the model testing framework, an automation method and tool is required

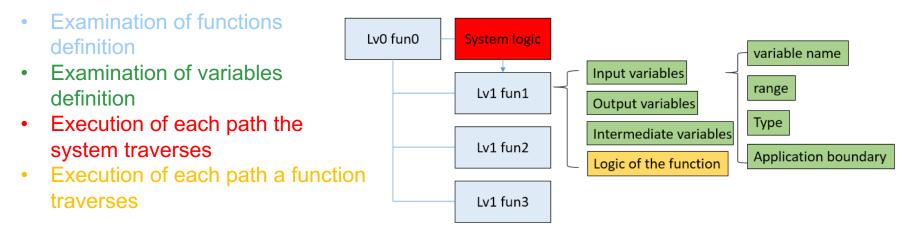
Automation of mutant generation

Nuclear Energy

An automation strategy has been developed for mutant generation.

- The Automated Reliability Prediction System (ARPS) is a model-based software reliability assessment tool for safety critical software
- ARPS models the Software requirements specification (SRS) and Software design description (SDD) using High level Extended finite-state machine(HLEFSM).
- Mutants can be generated by revising the HLEFSM

Current Mode: SRS Information Collection				
Menu Modes				
	scs - D initialize		SCS	
Software Requirement Specifications for a Simple Control System 1. Introduction of the Simple Control System (SCS)	- 🗋 openVa		Name: SCS Inputs Outputs Variables Logic	
The Simple Control System (SCS) takes the pressure and temperature signals from sensors as			+ -	
input and controls four different valves: Valve #1 to Valve #4. Each valve has its own register. If the valve is fully open, the register is set to 1; otherwise it			Name Application Boundary Type Range	Lv0 fun0 System logic variable name
remains 0. The temperature is a decimal value. It ranges from 0 °C to 100 °C; the pressure is also				Input variables
decimal and ranges from 5*105 Pa to 5*106 Pa. There is a Boolean variable "Status" in the system which is used to control Valve #4. The system does				Lv1 fun1 Output variables
not return any numerical output. The way it affects the external world is controlling the valves.				Intermediate variables
The logic of the system is as follows: 1) The system is initialized. 2) If the temperature is greater than or equal to 15				Lv1 fun2
°C, Valve #1 shall open. Register R1 is set to 1. 3) If the pressure is greater than or equal to 106 Pa,				
Valve #3 shall open. Register R3 is set to 1. 4) Valve #4 shall open at last. Register R4 is set to 1. 2. Specific Functional Requirements				Lv1 fun3
2.1 Function No.1: initialize the system. 2.1.1 Inputs:				
A Temperature. This is a decimal value. It comes from the temperature sensor and hence				
to 100 °C.	Add	Remove		
	Function	Function		



SRS/SDD Execution

Nuclear Energy

Strategy of SRS/SDD execution

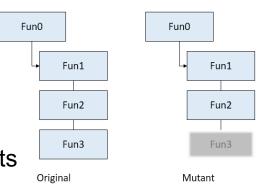
• Another key aspect is to be able to execute the HLEFSM of the SRS/SDD to identify defects. This is done in a phased approach:

- The execution results are outputted in a string by compiling the HLEFSM constructed by ARPS
 - E.g. in step 1, the execution result is shown as below. The level 0 function is placed in the square brackets. The higher-level functions are placed in the angle brackets.

[lv0 Fun0]<lv1 Fun1>< lv1 Fun2>< lv1 Fun3><...>

Mutant Identification and test cases generation.

Nuclear Energy


Mutants can be identified by comparing the results produced by executing the mutants.

• E.g. A Missing (definition of) Function mutant can be distinguished from the original application using the strings created.

Expected output: [Fun0]<Fun1>< Fun2><Fun3> Mutant output: [Fun0]<Fun1>< Fun2>

Test cases generation

• For mutants not identified by the existing test set, new test cases will be generated to kill the mutants using a Satisfiability Modulo Theories solver.

Prioritization methods were developed to further increase the cost effectiveness of the technique.

• These are based on EDD risk importance, function within EDD importance, fault class likelihood, mutant operator selection techniques

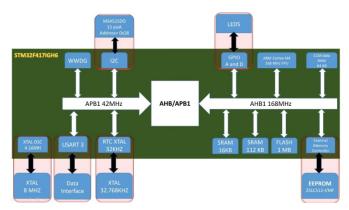
Accomplishments Perform Experimental Testing and Evaluation

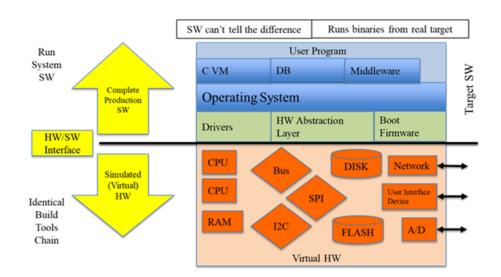
Nuclear Energy

Two Versions: Hardware vs. Virtual hardware/software derived from the real VCU Smart Sensor

- Barometric pressure and temperature measurement device
- Derived from a Part-23 (non-safety-related) VCU ARIES_2 Advanced Autonomous Autopilot Platform
- Software
 - Real-Time Operating System ChibiOS
 - Deterministic real-time multi-threaded scheduling
 - Drivers
 - Communication Layers

Purpose


- Demonstrate the efficacy of the methodology on an actual commercial EDD used in nuclear industry
- Proprietary concerns over IP \rightarrow VCU Smart Sensor
 - Representation of a commercial EDD
 - Guided by industry discussion (Schneider Electric, Foxboro) to ensure architectural features were representative of actual commercial devices



Smart Sensor

Nuclear Energy

Features

Temperature and pressure measurement Altitude and airspeed measurement Communication interfaces: I²C, UART

Architecture

ARM STM32FM407 System on a Chip (SoC) device

Sensor head – MS4525DO

Functions:

Collection, display, and communication of measured data

Device configuration, storage of calibration information, performance of sensor functions

Virtual Platform

- Model of a hardware system that can run the same software as the hardware it models
 - Exact same architecture as the real hardware accurately models the aspects of the real system that are relevant for software
- Allow for plant models to be integrated with the hardware/software model, placing the testing into plant context

Accomplishments

Nuclear Energy

- Presented project findings at the 2017 ANS Nuclear Plant Instrumentation, Control, and Human-Machine Interface Technologies (NPIC&HMIT) Conference in San Francisco, California
 - Derenthal et al., "Virtualized Hardware environments for Supporting Digital I&C Verification"
 - T. Jacobi, et al., "Investigation of Instrumentation Containing an Embedded Digital Device"
 - B. Li and C. Smidts, "Extension of Mutation Testing for the Requirements and Design Faults"
 - R. Wood, H. Hashemian, B. Shumaker, C. Smidts, and C. Elks, "Development of a Model Based Assessment Process for Qualification of Embedded Digital Devices in NPP Applications: Research Approach and Current Status"

Technology Impact

Nuclear Energy

Development of the Model-Based Testing Method:

- Provide effective demonstration of whether devices are subject to CCF
- Establish a cost-effective automated testing framework for industry stakeholders to qualify equipment with EDDs

Resolution of Concerns Regarding CCF Vulnerability:

- Provide information to industry stakeholders on EDDs and CCF vulnerability
- Reduce licensing, scheduling, and financial risk for utilities and reactor designers associated with utilizing digital equipment
- Enable deployment of advanced instrumentation (e.g., sensors, actuators, microcontrollers, etc.) with EDDs
- Lessen industry reliance on obsolescent analog technologies
- Allow realization of the benefits of digital technologies

Activities for Third Year

Nuclear Energy

Development of the model-based testing framework

- Implement the automation tool for the extended mutation testing in the requirements and design phase
- Finalize the Virtual Platform simulation and the testbed automation framework
- Assemble the physical smart sensor for baseline testing and establish the testing protocol
- Generate and execute source code, requirements/specifications, and design mutants for the representative instrument

Perform Experimental Testing and Evaluation

- Further enhance the VCU smart sensor, as needed, with additional functionalities appropriate to the nuclear context
- Integrate the test subject and testbed to execute test cases and verify the sufficiency of the test set using scripting methods
- Perform baseline and MBT experimental testing
- Evaluate testing results and perform comparative analysis to confirm the capabilities of MBT

Nuclear Energy

The practical methods, tools, empirical data, and demonstrations that results from this research effort will:

- Facilitate digital I&C qualification activities for advanced instrumentation technology for deployment in the industry
- Support reactor vendors and utilities in assessing I&C design and modernization options without substantial regulatory risk and implementation costs
- This research establishes advanced sensor and instrumentation technology as a viable design/upgrade option to provide improved plant stability, system reliability, and operational margins for safe and sustained operations
- This contribution to the technical basis for qualifying EDDs in regard to CCF vulnerability will benefit all reactor types, both existing and emerging