

Sensors and Instrumentation Office Of Nuclear Energy **Annual Review Meeting**

Coolant Flow Sensor for Small Modular Reactors

Phase II SBIR (August 2016 – July 2018) Sporian Microsystems, Inc. **PI: Jon Lubbers**

October 18-19, 2017

Project Overview

Nuclear Energy

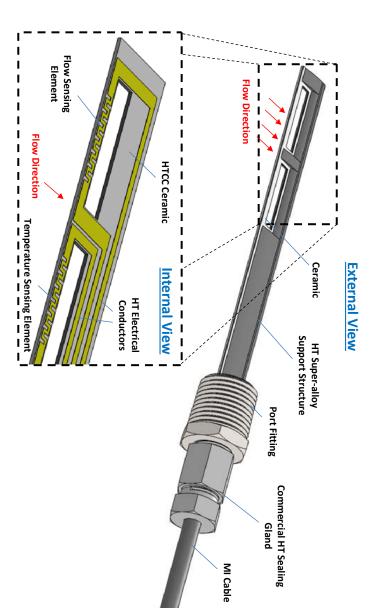
- Motivation: Nuclear Energy OEMS ID'd a high priority need for a liquid flow sensor to monitor reactor coolant flow
- **Objective:** Develop a coolant flow sensing system
- Build upon prior Sporian-OEM collaboration for liquid and gas flow sensors
- Harsh environment operation: 350°C; 2500 PSIG; 0.9 m/s liquid flow; borated water; irradiation (~8E+20 n/cm² fluence over the 60-year life of the reactor)

Task schedule in Phase II:

Task 6	Task 5	Task 4	Task 3	Task 2	Task 1	Task #
Task 6 Rigorous lab-scale/neutron testing of 3rd-gen sensors/packaging	Revise sensor/packaging designs & build 3rd-gen prototypes	Task 4 Rigorous lab-scale testing of 2nd-gen sensors/packaging	Design/fabrication of driving/signal conditioning electronics	Task 2 Develop 2nd-gen hardware designs, processes, & prototype	Work w/OEMs & stakeholders to guide design/development	Task Description
				- M2		Aug-16 Sep-16 Oct-16 Nov-16 Dec-16 Jan-17 Feb-17 Mar-17 Apr-17 Jun-17 Jun-17 Jun-17 Aug-17 Sep-17
M7	M5 M6					Oct-17 Nov-17 Dec-17 Jan-18 Feb-18 Mar-18 Mar-18 May-18 Jun-18 Jul-18

Technical Approach

Nuclear Energy


Based on established anemometry methods

Build upon prior Sporian development of liquid and gas flow sensors

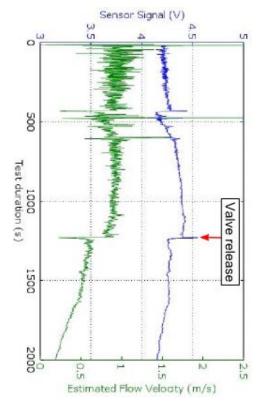
Leverage Sporian's previous experience in high temperature sensor materials, packaging, and design

Focus on materials, packaging, and testing

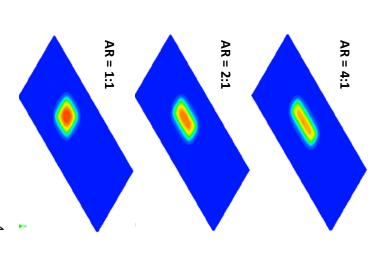
- Borated water
- Irradiation effects
- Media isolation (i.e., high-pressure sealing)
- Demonstration and calibration

Phase | Results

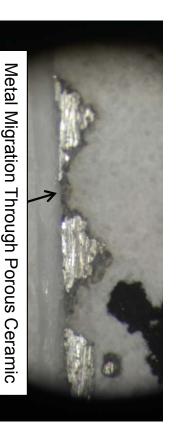
Nuclear Energy

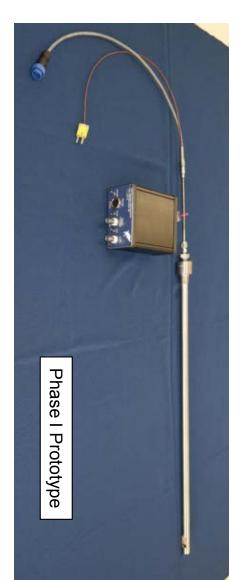

Materials Testing

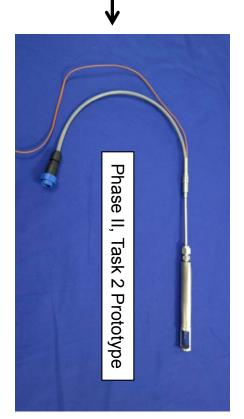
- Material screening by gamma spectroscopy
- Soak in 300°C, 1600psig borated water


Prototype Device Design and Testing

- FEA to maximize sensitivity
- Active device irradiation test (1E+18 n/cm² fast)
- Flow testing 1600psig, 315°C water




Phase II Results


Nuclear Energy

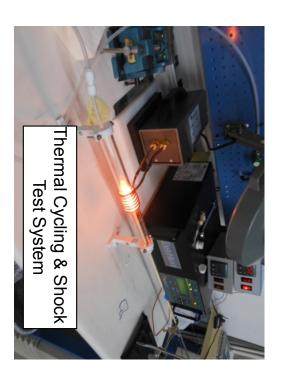
Task 2 Milestone: 2nd-generation device designs and processes developed, and prototype sensor & packaging hardware constructed

- Borated water corrosion/compatibility
- Irradiation insensitivity
- Media isolation
- Electrical interconnect reliability

Phase II Results

Task 3 Milestone: Operational, 1st-generation, integrated subsequent testing and prototyping efforts electronics platform that can be used to support parallel and

Analog and digital versions

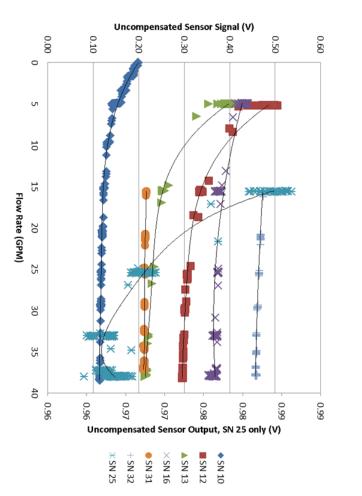


- Phase II Results

Task 4 Milestone: Experimental results from testing of

2nd-generation designs and prototypes

- 100's of hours in Sporian flow loop (50°C, 1 atm, 3 ft/s max)
- Thermal soak, shock, cycling
- 100 hours in 300°C pressurized water
- Electronics verification

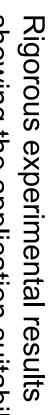


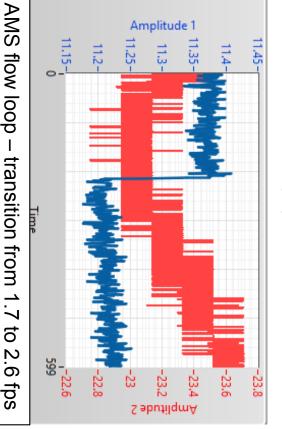
Phase II Future Work

Task 5 (Aug 2017 – March 2018): Redesign based on test results

- Reliability
- Optimize signal:noise
- Design for manufacture
- Application-specific packaging

Month 20 Milestone: 3rd-generation device prototypes Month 16 Milestone: 3rd-generation device designs


Phase II Future Work


Nuclear Energy

Task 6: Rigorous lab-scale testing of 3rd-generation prototypes

- Sensors, packaging, and fully integrated electronics
- Partially coupled temperature, pressure, and flow testing (in-house)
- Fully coupled temperature, pressure, and flow testing (external test tacilities)
- Active device irradiation
- Steps toward nuclear qualification

showing the application suitability of 3rd-gen designs and prototypes

Technology Impact

- Contribute to understanding of coolant dynamics
- Improved reactor efficiency and safety

Benefits of Sporian's design

- Single vessel penetration
- Minimal flow restriction
- Suitable for large non-pipe flow channels
- High accuracy
- Diversity

Conclusion

New need for flow sensor in passively safe reactors

- Sporian developing novel coolant flow sensor
- Status: 3rd generation product design
- Phase II ends July 2018

Sporian Microsystems, Inc. Jon Lubbers 303-516-9075 x16, jlubbers@sporian.com