

Enhanced Micro-Pocket Fission Detector Nuclear Energy Enabling Technologies (MPFD) for High Temperature Reactors Idaho National Laboratory **Troy Unruh**

Sensors and Instrumentation Office Of Nuclear Energy **Annual Review Meeting**

U.S. DEPARTMENT OF ENERGY **Nuclear Energy**

Project Overview

Nuclear Energy

Goal, and Objectives

temperature within a single package simultaneously measuring thermal neutron flux, fast neutron flux and Develop and test high temperature capable Micro-Pocket Fission Detectors (HT MPFDs), which are compact fission chambers capable of

N

October 18, 2017

- Project Overview

NEET Participants

- Troy Unruh; Idaho National Laboratory
- Kansas State University Douglas McGregor, Michael Reichenberger and Sarah Stevenson;
- Jean-François Villard; Commissariate a l'energie atomique

energie atomique • energies alternatives

Project Overview

Schedule

)) ort	l) Rep (Al	All) (A	Re (/	
			An	Task 7: Reporting and Project Management
to nt raluations	 Repeat prior evaluations demonstrate improvement Compare and contrast evaluations and analysis models Issue letter report 			Task 6: Improved Prototype Laboratory and Analytical Evaluations and Irradiation Testing (INL/KSU/CEA)
needed	Refine design based on evaluations as needed Jpdate analysis models as Procure new materials as new ssue letter report			Task 5: Prototype Design Improvement and Material Procurement (INL/KSU/CEA)
	acilities analysis models	Test in irradiation fCompare against aIssue letter report	J	Task 4: Prototype Irradiation Testing (INL/KSU)
	furnaces, autoclaves, etc. ; for irradiation	 Test in high temperature Develop analysis models Issue letter report 		Task 3: Prototype Laboratory and Analytical Evaluations (INL/KSU/CEA)
	nstruction for 800 °C	prior results and refine cor e letter report	• Use	Task 2: Prototype Fabrication (INL/KSU)
		fine design for 800 °C rials for enhanced design	Use prior results and ref Procure candidate mate Issue letter report	Task 1: MPFD Design Optimization and Material Procurement (INL/KSU/CEA)
	Year 3	Year 2	Year 1	Tasks
	Verdules	Milestones and Den		

October 18, 2017

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors

Nuclear Energy

FY17 Milestones, Deliverables and Outcomes

- at KSU (M4), 7/7/2017 Complete electroplating and amplifier development
- Receive high temperature MPFD components from KSU for assembly (M3), 3/31/2017

MPFD electrodeposition equipment

October 18, 2017

Accomplishments

FY17 Milestones, Deliverables and Outcomes

- Assembly and deployment
- Evaluate HT MPFD for temperature characterization (M3), 3/30/2017
- Evaluate HT MPFD for flux characterization (M2), 7/30/2017

Nuclear Energy

FY17 Milestones, Deliverables and Outcomes

- Assembly and deployment
- Evaluate HT MPFD for temperature characterization (M3), 3/30/2017
- Evaluate HT MPFD for flux characterization (M2),

MPFD components prior to final assembly

X-ray (left) and 3D CT (right) images of MPFD showing wire connections

Nuclear Energy

FY17 Milestones, Deliverables and Outcomes

- TREAT deployments (TREAT funded)
- Pre/Post TRIGA pulse analysis
- SOW for KSU support in experiments and modeling

October 18, 2017

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors

Nuclear Energy

FY17 Milestones, Deliverables and Outcomes

- Fission material characterizations underway
- Idaho State University (ISU) MS student (funded by TREAT IRP)
- Alpha counting
- Back-to-back fission chamber comparisons
- 3D confocal laser scanner
- ISU reactor measurements

BTB fission chamber for MPFD characterization

D MPFD fissile deposit characterizations in AGN-201

October 18, 2017

3D laser scans of MPFD (fissile) surface roughness

Enhanced Micro-Pocket Fission Detector (MPFD) for High Temperature Reactors

Nuclear Energy

FY17 Milestones, Deliverables and Outcomes

- 9/28/2017 Issue "Enhanced Micro-Pocket Fission Detector for High Temperature Reactors - FY17 Final Project Report, INL/EXT-17-43397" (M2),
- Additional papers and presentations of the HT MPFD technology

Nuclear Energy

Accident Tolerant Fuel (ATF) Deployments

- ATF-2 Sensor Qualification Test in ATR Irradiation
- HT MPFD (Irradiation funded by ATF-2)
- In ATR for one cycle (~59 days)
- Irradiated with other advanced sensors

Completed HT MPFD

Nuclear Energy

Advanced Gas Reactor (AGR) Deployment

- AGR-5/6/7 Irradiation in ATR (funded by AGR)
- HT MPFD with Type N thermocouple
- Irradiation for entire test (~3 years)
- Irradiated with other advanced sensors
- Installed in test train, irradiation in FY18

Element	P-19000101	NFT.A.250.4	NFT.U.25
MgO	0.088		
Al ₂ O ₃	99.6	93.9	98.7
SIO2	0.10	6.04	1.22
C	0.031	0.044	0.049
CaO	0.035		,
Cr ₂ O ₃	0.026		,
Fe ₂ O ₃	0.084	0.021	0.040
NiO	0.017 ^b	0.011	0.016
Ga ₂ O ₃	0.015		
	Areal Dens	ities of deposits	(in µg/cm ²
Pţ	N/A	72.3	61.4
Τh	N/A	2.7	,
c	N/A	,	6.3

HT MPFD drawing for ATF-2 and AGR 5/6/7

HT MPFD material certification shipment and results

HT MPFD in AGR 5/6/7 test train

Nuclear Energy

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Deployment

- A Transient Reactor Physics Experiment with High-Fidelity, 3-D Flux Measurements for Validation and Verification
- Kansas State University led: Dr. Jeremy Roberts
- University of Wisconsin-Madison reactor
- Specially designed MPFD wands deployed for steady state and transient response

0

Plug

D

MPFD wands (left) and locations in University of Wisconsin-Madison reactor (right)

4 in Typ

0

Nuclear Energy

Radiation Hardened Readout Circuit Design for High Environments Temperature Micro-Pocket Fission Detectors Operating in Harsh

- International Nuclear Energy Research Initiative (I-NERI) between United States of America and the Republic of Korea Korea Atomic Energy
- INL and KAERI
- Kickoff meeting at INL, progress meeting at NPIC-HMIT 2017

KAERI

Research Institute

Circuit design sent to manufacturers to make a chip

Title: Radiation Hardened Readout Circuit Design for High Temp Fission Detectors Operating in Harsh Environments **J.S. DOE Laboratory or University:** Idaho National Labora Program Announcement US/Korea I-NERI

FULL PROPOS

Other Key Collaborating Organizations: Corea Advanced Institute of Science & Techno COREAN Laboratory/Institute: Korea Atomic :. Inyong Kwon (KAER 10ne: +82-42-868-4925 nail: ikwon@kaeri.re.kr proving Laboratory Technical Lead: Dr. Carl Stoots, Inst Principal Investigator(s) Name/Email/Phone: N/A cipal Investigator(s) Name/Email/Pho Troy Unruh (INL) 16: +1-208-526-6281 ram and Work Package Number: Area: Advance NEET ASI CA-14-ID-IN-0

2017 Kickoff meeting at INL

Radiation hardened pre-amplifier design for HT MPFD

pping radiation hardening techniques that can be utilized in optimizing a pr for the high temperature micro-pocket fission detectors operating in harsh

ENERGY

Crosscutting Accomplishments

Nuclear Energy

TREAT Integrated Research Project (IRP)

- Computational & Experimental Benchmarking for Transient Fuel Testing
- Oregon State University led: Dr. Wade Marcum
- MITR irradiation test
- 2 week irradiation testing campaign
- HT MPFD Irradiated at MIT in July 2017

Massachusetts Institute of Technology Nuclear Reactor Laboratory

MPFD testing at MIT Reactor with INL intern

Nuclear Energy

Fission Chamber characterization at CEA Cadarache and INL

- MINERVE reactor calibrations (CEA/DOE collaboration WG 3.5 In-Pile Instrumentation)
- Intern from INL/Kansas State University
- MPFD received at CEA in May 2017
- Initial calibrations completed June 2017

HT MPFD pulse from CEA calibrations

CEA and INL researchers at MINERVE reactor (France)

October 18, 2017

Technology Impact

Nuclear Energy

detection Advanced sensor for DOE-NE programs requiring real-time flux

- Neutron sensitive (BOTH fast and thermal)
- Temperature sensitive with integral high-temperature thermocouple
- Compact size
- Radiation resistant
- High temperature and pressure compatibility
- High accuracy, high resolution
- Flexibility (variable geometries, sensitivities, lifetimes and detector responses)
- Fast response
- Long lifetime

State-of-the-art sensor positions U.S. for leadership in irradiation

- testing
- Minimizes flux perturbation associated with typical real-time in-core sensors
- Eliminate uncertainty with transient correction factors
- Higher fidelity data for modeling and simulation of materials and fuels¹
- Permits 3D modeling and triangulation of data for validation¹

[1] J. Roberts, et al., "FY15 NEUP: A Transient Reactor

Conclusion

All HT MPFD project milestones completed successfully and on schedule

- HT MPFD will continue to be deployed by several DOE-NE irradiation testing programs
- Radiation Detection Technologies (RDT) developing a HT MPFD Research Phase I Project, "Advanced Manufacturing of Micro-**Pocket Fission Detectors**" commercialization strategy under a Small Business Innovative

