

The University of Nebraska Lincoln **Jinying Zhu**

Ultrasonic Monitoring of Concrete Alkali-Silica Reaction (ASR) Structures Affected by

Sponsor: Department of Energy NEUP 16-10214 Affected by Alkali-Silica Reaction (ASR) Program: RC-5 (PD: Bruce Hallbert) **Online Monitoring System for Concrete Structures**

Idaho National Laboratory Georgia Institute of Technology Research Team The University of South Carolina The University of Nebraska Lincoln (lead) The University of Alabama

Project objective

Shor term objective

structures advanced signal processing algorithms to monitor ASR induced degradation in reinforced concrete integrates active and passive sensor networks with Develop a dual-mode online SHM system that

Long term goal

operational and maintenance decision making Provide support to a probabilistic SHM framework under development at INL, and support long-term

Alkali-Silica Reaction (ASR)

- ASR is a chemical reaction between Alkaline in cement and silica in aggregate of concrete
- The expansive reaction product will cause microcrack in concrete
- ASR is a slow process. It may take many years to show cracks
- ASR was found in Seabrook NPP in 2010

ASR microcrack

ASR in Bridge Pier

ASR Evaluation

Problems

- How to detect initiation of ASR cracking?
- How to evaluate the progression of ASR damage?

Proposed Solutions

- Active sensing using diffuse ultrasonic wave (U Nebraska)
- Passive sensing using acoustic emission (S Carolina)

Other Tasks

- Specimen fabrication and material research (U Alabama)
- Signal processing and prognosis modeling (Gatech and INL)
- Validation on large scale specimens

Diffuse Ultrasonic Waves

- Waves scattered by aggregates and microcracks
- Coda wave interferometry (CWI)
- Measure relative wave velocity change
- Need a reference signal

Research Tasks at UNL

Experimental program

- Monitoring large scale ASR concrete specimens using 2017 diffuse ultrasonic waves – system was installed in April
- Monitoring of small scale ASR specimens will start soon
- CWI analysis on small specimens with mechanical cracks

Numerical study

- Modeling of concrete with randomly distributed
- aggregates and microcracks

Three Large Scale Concrete Specimens

ORNL and University of Tennessee built three large

concrete specimens to study stress effect on ASR

- Dimension: 3.5 x 3 x 1 m, cast in August 2016
- Control specimen
- Unconfined ASR specimen
- Confined ASR specimen
- NDE researchers are invited to test on the specimens
- Evaluate the effectiveness and reliability of NDE techniques
- Monitor the ASR progression

Three Large Scale Concrete Specimens –

Control specimen

Confined ASR specimen

Extensive cracks observed at sensor installation (April 2017).

Sensor selection

Experimental setup

- University of Nebraska (UNL) team installed sensors (April 21) on ORNL/UTK large scale ASR specimens, and start to receive data
- Collect data around 2:15AM daily. The information was also shared acoustic emission research team.

Ultrasonic remote monitoring system and sensors

Temperature effect

- Velocity change can be caused by
- Temperature change
- Microcracking
- Shrinkage, continuing hydration induced strength increase
- Temperature variation has significant effect on CWI analysis, much larger than microcracking effect
- Relative wave velocity change dV/V is inversely proportional to temp change
- Temperature effect is typically compensated by a reference specimen in the same temp condition

Future work

- on diffuse wave analysis. opening/closing of microcracks, and the effect of which Improve understanding on temperature effect on
- Start detailed monitoring and analysis on medium size ASR specimens by December 2017
- Collaborate with U South Carolina to analyze data tunction system using the AE and ultrasonic sensors. recorded by the AE sensors – feasibility to develop a dual

Acknowledgements

- DOE NEUP program
- University of Tennessee Knoxville and ORNL for providing access to the large scale specimens
- Collaborators (U S Carolina, U Alabama, Gatech, INL)
- University of Nebraska for cost share and space allocation