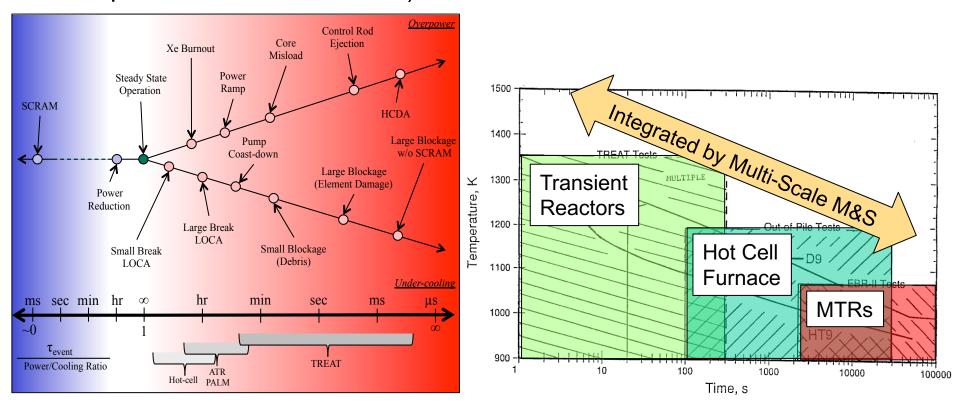
www.inl.gov

Transient Testing Instrumentation Needs

Colby Jensen, <u>Nicolas Woolstenhulme</u>, Daniel Wachs Nuclear Science and Technology Division Idaho National Laboratory

Advanced Sensors and Instrumentation

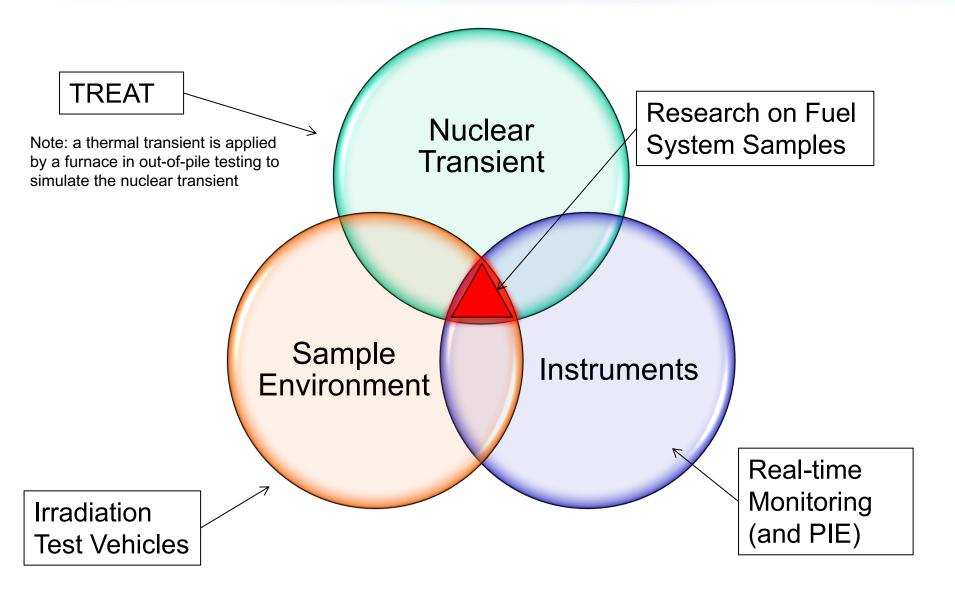
2016 NE I&C Review October 17-18, 2017



Fuel Safety Research

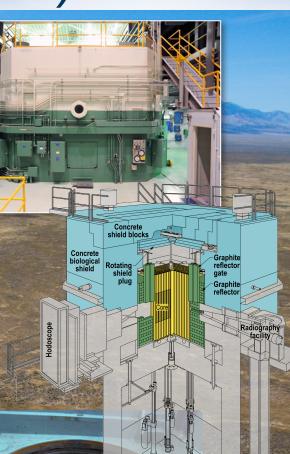
Objective:

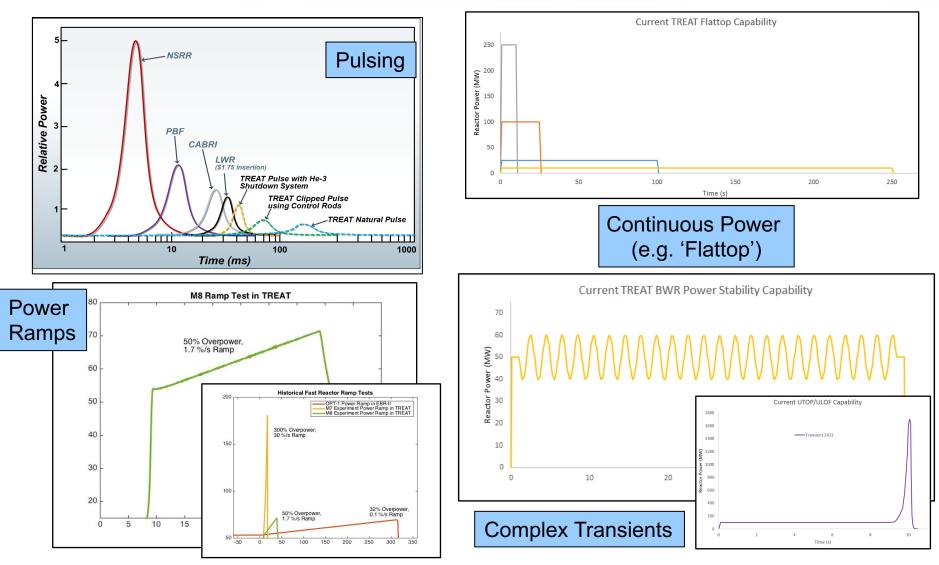
Conduct the experimental activities required to help the industry describe how fuel systems respond to relevant transients (both operational and off-normal)



Active Fuel Safety Research Areas

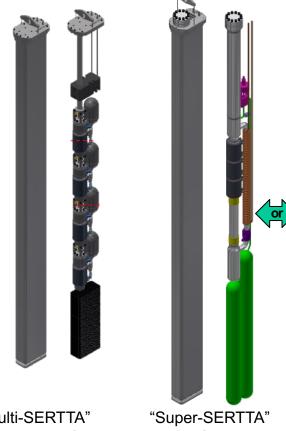
- Optimization of LWR Fuel Technology
 - Improved fuel safety criteria (power uprates, improved reactor protection strategies, ...)
 - LWR fuel burnup extension
 - Accident tolerant fuels
- Enabling Advanced Reactor Technology
 - Establish fuel safety criteria for new reactor types including liquid metal, gas, or molten salt reactors for power production, neutron science, space propulsion, etc.
- Fuel Behavior Science
 - Separate effects tests to improve fundamental understanding of material behavior using short tem, dynamic irradiation

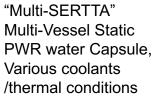

Scientific Instruments for Fuel Safety Research


Transient Reactor Test Facility (TREAT)

- TREAT's unique design delivers the nuclear environment required to meet fuel safety research needs
 - Core: ~1.2 m high x 2 m. diameter, 19 x 19 array of 10 x 10-cm. fuel and reflector assemblies
 - Fuel: 0.2 wt.% high enriched UO₂ dispersed in graphite
 - Instantaneous, large negative temperature coefficient (self protecting driver core)
 - Air-cooling system for decay heat removal (dry core)
 - 100 kW steady-state operation
 - Allows unique instrumentation access to the core
 - Computer controlled, hydraulically-driven transient rods
 - Allows for flexible power shaping delivery of 2500MJ max available core energy
- Resumption of Operations
 - TREAT put in operational standby in 1994 ending 40 years of transient testing of nuclear fuels in U.S.
 - 'Mission Need Statement for Resumption of Transient Testing' issued by DOE in January 2010
 - TREAT Selected as 'preferred option in February 2014 and restart activities were initiated at the beginning of FY15
 - Commitment to restart by the end of 2018 (to support the Accident Tolerant Fuels Program)
 - First operations anticipated in November this year!

TREAT Power Transients




Fuel Safety Testing

Experimental Devices of the Next Generation

Current TREAT device development

"Super-SERTTA" Large, Single Vessel Capsule, RIA/LOCA, UTOP, Various coolants /thermal conditions

PWR Flowing Water Loop

(based on historic

TREAT design)

"MARCH" Modular capsule system to support a variety of simpler, cheaper testing

Car crash testing analogy...

Pre-test "State 1"

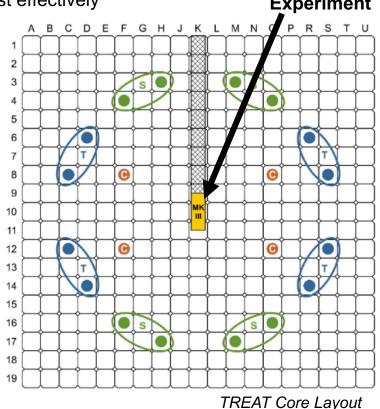
Post-Irradiation

"State 2"

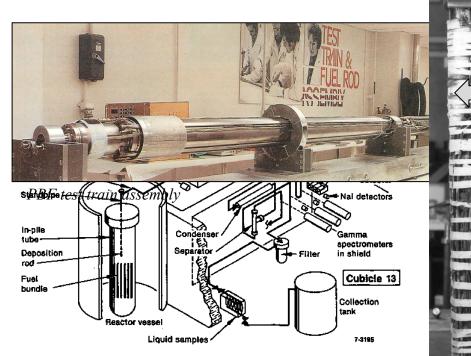
• Car crash testing analogy for transient testing

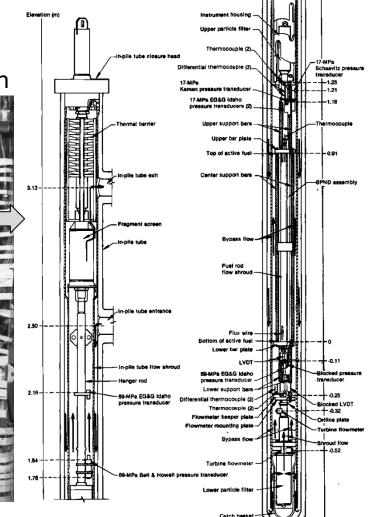
https://www.youtube.com/watch?v=fPF4fBGNK0U

In-Pile Video of Fuel Behavior at TREAT


 Compare previous video with high speed video testing of LWR fuels in a windowed water capsule at TREAT from the mid-1960's

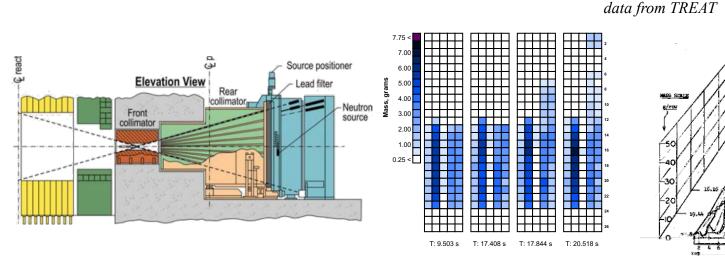
Characteristics of Transient Testing at TREAT

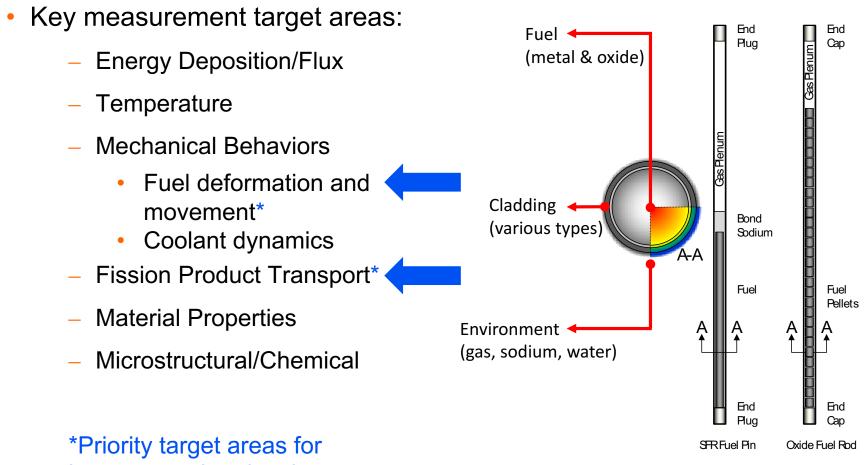

- Primary historical mission supported sodium-fast reactor testing
- TREAT is well suited to **self-contained**, **package-type**, **drop-in test devices**
 - Installation, testing, and withdrawal in a matter of days enables support for rapid transition between different-environment test devices (e.g. Na, H_2O , gas)
 - Effective approach to test many pins guickly and cost effectively
- Examples of historical instrumentation objectives: time and location of first cladding failure; time-dependent axial growth; fuel relocation; coolant dynamics, phase, temperature, and pressure
- Experimental coupling with the reactor trigger reactor scram at failure or trigger power burst upon Na voiding using experiment instrumentation
- Fuel-motion monitoring critical to transient testing
 - High-speed video in transparent capsule (previous slide)
 - Fast-neutron hodoscope (later slide)


Experiment

- Experiment integration is non-trivial from:
 - Integral to experiment test trains
 - To externally integrated systems; for example, hodoscope (next slide), fission product monitoring

Fission product sampling and monitoring system from PBF


Instrumentation for PBF test train for LWR


- TREAT Fuel Visualization and Motion Monitoring
 - Fast neutron hodoscope is a key capability for monitoring fuel motion during a transient
 - Fission-born fast neutrons emitted from the specimen travel through the experiment containment wall, through a collimator, and into a detector array

Example of hodoscope

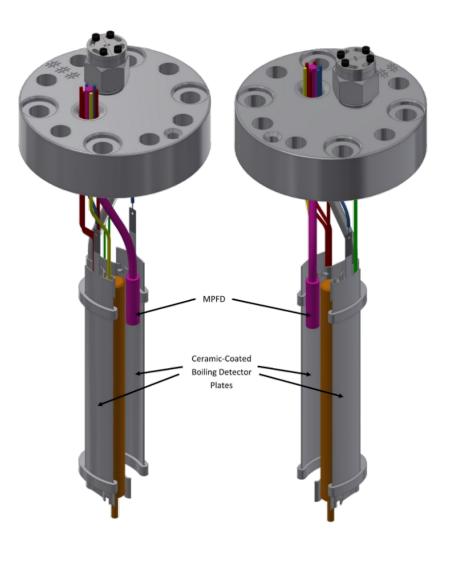
Provides pixelated view of fuel mass in each collimator slot -

instrumentation development

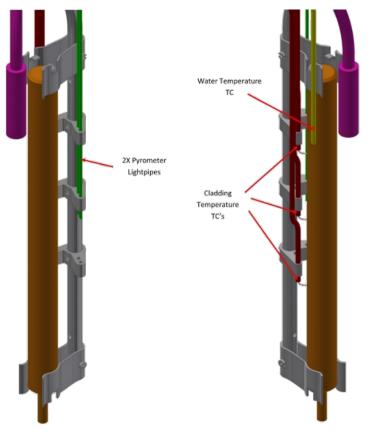
Instrument target locations for representative fuel designs for SFR and LWR systems

Instrumentation Challenges and Opportunities

- **Visualization** imaging techniques; e.g. advanced hodoscope, visible & IR videography (e.g. boroscope technologies), microstructural visualization
- Environment resistance irradiation, temperature, pressure, material compatibility
- **Non-intrusive** non-contact, non-destructive
 - Miniaturization facilitates proximity to specimen and experiment integration
 - **Remote application** facilitate installation onto pre-irradiated specimens
- Electronics in-core options, signal conditioning, ADC, enable more signals to/from experiments
- Adaptation of existing technologies to experimental constraints
 - Hot-cell implementation considerations (non-contact, easy alignment, etc.)

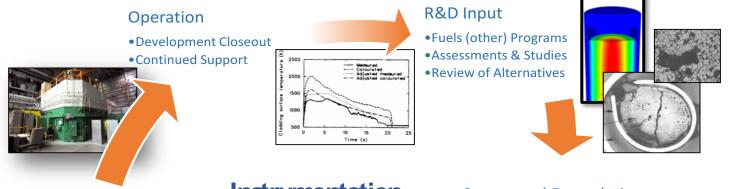


Critical Instrument Considerations


- Important differences from steady-state irradiation experiments (ATR, HFIR):
 - Neutron damage *nearly negligible* in transient testing
 - Gamma heating is very high during big pulses, volumetric fission heating can be enormous if sensor includes fissile material
 - Instrument response time (and data capture time) usually critical
 - TREAT provides easier access and more flexibility to the experiment location (dry core)
 - One-time-use instruments expected
 - Gamma background rather low, except when close to pre-irradiated experiment specimens (hot-cell implementation)
 - Instrumenting pre-irradiated fuel (hot-cell) is critical to transient testing programs
- Many of the same constraints still apply (not comprehensive):
 - Most test trains are severely limited on space, wire routing can be difficult, still a variety
 of options for wiring easier when integrated into initial experiment design, facilitated by
 "flexible wires" (fragile fibers difficult)
 - Must fit within the assumptions of experiment safety package
 - Hermetic penetration (and high-pressure/temperature penetration) common for anything passing into primary containment

Instrumentation Design for ATF RIA Experiments

- Static water capsule at PWR conditions
- Significant instrumentation capability
- Probable single test use instruments
- Current program development is focused on deployment of these instruments


Collaborations for Instrumentation

- NEUP/NEET Projects
 - Advanced Instrumentation for Transient Reactor Testing IRP UW,
 Ohio St, Kansas St, Idaho St, INL
 - Benchmarking for Transient Fuel Testing IRP Oregon St, UMich, MIT, INL
 - A Transient Reactor Physics Experiment with High Fidelity 3-D Flux Measurements for Verification and Validation – Kansas St, UW
 - Ultrasonic Sensors for TREAT Fuel Condition Measurement and Monitoring – PNNL, INL
- Programmatic Instrument Development
 - Pyrometer Utah St
 - Void sensor Utah St, U of New Mexico
 - Micro-Pocket Fission Detector (MPFD) Kansas St
- International collaborations
 - IRSN (France), CEA (France), Halden (Norway), NNC (Kazakhstan)
- Continue to grow...

Instrument Development & Qualification

- High Temperature Test Laboratory (HTTL) is testbed
- Primary challenge is the integration of instruments into a test device and demonstration of interfaces and instrument performance

Acceptance

- •Testing in TREAT
- •Experiment Integration
- •Implementation Support

Instrumentation Engineering Process for TREAT Experiments

Conceptual Formulation •Facility & Experiment Constraints •Proof-of-concept testing

Conceptual-to-final designEngineering Development

- Experiment Integration
- Refinement & Optimization
- Characterization & Testing
- Uncertainty Quantification

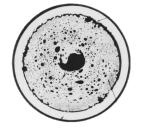
Summary

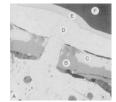
- TREAT has a long history of performing transient irradiation experiments on nuclear fuels and materials and will soon be restarted (within months!)
- Priority test environments and experimental focus are currently overpower and undercooling events for Light Water Reactors and Sodium-cooled Fast Reactors.
- TREAT provides unique in-pile instrumentation access
 - Transient in-pile experiments employ *significant* instrumentation
 - Wide range of experimental configurations and environments
 - Fast response rate often required for instruments
 - Short-duration, high-peak neutron flux
 - Nuclear heating in materials can be significant
- Important near-to-medium-term challenges will be adaption/qualification of existing instrument technologies Next generation of sensors is needed
- INL's HTTL laboratory is the center of instrument development and qualification
- Encourage instrument testing in TREAT
- INL Transient Testing team can help! (needs & constraints)

Transient Testing Contacts: Daniel Wachs – National Technical Lead for Transient Testing Nicolas Woolstenhulme – TREAT Experiment Design Lead Colby Jensen – TREAT In-Pile Instrumentation Lead David Chichester – Hodoscope Lead

State-of-the-Art Instrumentation for Transient

Key Measurements	Transient Testing Instrumentation
Energy Deposition/Flux	passive dosimetry, SPND, miniature fission chambers
Temperature	thermocouples
Mechanical Behavior & Pressure	hodoscope, LVDT-based elongation and pressure transducer, strain- gauge pressure transducers, ultrasonics for boiling
Fission Product Transport	
Material Properties	
Microstructural/Chemical	


*Not ready for deployment in U.S.



Important Transient Fuel Behavior

- Pre-failure:
 - Fuel damage mechanisms (initial damage \rightarrow release of FP)
 - Fuel- (pellet-) cladding mechanical interaction (FCMI/PCMI)
 - Fuel-cladding chemical interaction (FCCI)
 - Effects from the state of the fuel rod (preirradiated, etc.)
 - Cladding oxidation (boiling phenomena)
 - Cladding pressurization
 - Fuel swelling & relocation
 - In-pin axial fuel motion
 - Fuel melting
 - Fission gas migration & release
 - Solid fission product migration

Result for TREAT test M7 (metal-SFR), ANL-IFR-124

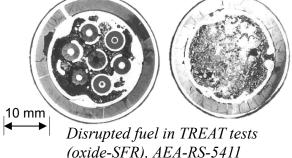
FCCI in TREAT test M5 (metal-SFR), ANL-IFR-124

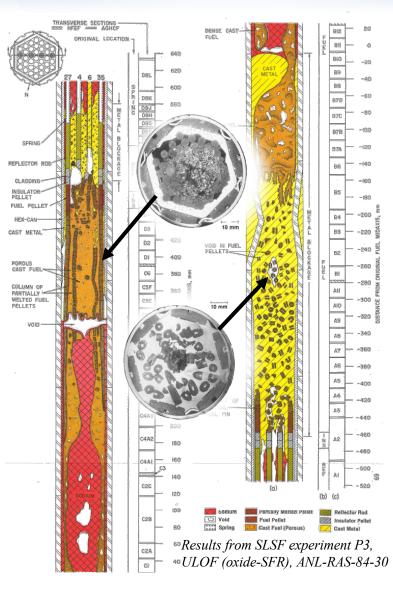
NEA-6847

Cladding failure at hydride blister,

Cladding oxidized at LOCA conditions, NEA-6846

LOCA fragmentation, NEA/CSNI/R(2016)16




Important Transient Fuel Behavior

- Post-failure:
 - Cladding failure mode and location
 - In-pin fuel motion
 - Fuel dispersal/ejection
 - Fuel-coolant interaction
 - Mixing and motion of disrupted fuel, cladding, and coolant

Cladding failure and dispersed fuel inventory for high burnup fuel, NEA-6847

