ENERGISE Program Kickoff DOE Award #: DE-EE0008006

U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

Robust and resilient coordination of feeders with uncertain distributed energy resources: from real-time control to long-term planning

October 11, 2017

Lead: University of Vermont

Introducing University of Vermont

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

The Energy Systems Laboratory at UVM (TESL@UVM) TESI 🕜 UVM

Six EE faculty working on grid and energy problems

Luis Duffaut

Espinosa

Pavan

Racherla

Broad expertise

- Power systems
- Optimization
- Control theory
- Stochastic systems
- Weather/Climate
- Communications

Advising more than 10 graduate students in the area of power/energy (most PhD)

Mads Almassalkhi Jeff Frolik Paul Hines

2|

Introducing University of Vermont

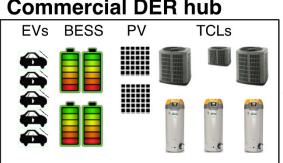
U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

TESL@UVM is growing

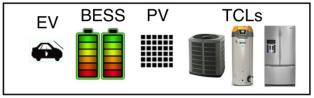
Recent and ongoing industry-research projects with

Ongoing federal grants with



ENERGISE: How the Why?

U.S. DEPARTMENT OF **EVEXCE**


Energy Efficiency & Renewable Energy

- Consider a 1000-feeder distribution system in Year 2030 with
 - >50% solar PV by energy and >100% solar PV by peak demand
 - Millions of "active nodes" (controllable net-load devices) have been installed

Commercial DER hub

Residential DER hub

How do we leverage these uncertain/variable DERs optimally for robust and resilient grid operations and future markets while still giving customers what they need, when they need it?

Key idea: adapt wide-area control concepts to Dist. Ops.

→ Primary, secondary, tertiary control becomes within- and between-feeder balancing, and DSO markets

UVM leads project (Almassalkhi, Ossareh, Racherla)

- power engineering, optimization, control theory, data analytics
- open-source software & HiL validation

Dr. Mads Almassalkhi

Dr. Hamid Ossareh

Dr. Pavan Racherla

JHU: optimization & markets (Gayme, Mallada)

• Optimization, dynamical systems, and energy market design

Dr. Dennice Gayme

Dr. Enrique Mallada

PNNL: flexible load modeling (Kundu)

• Power systems, control, modeling, large-scale validation

Dr. Soumya Kundu

✤ NIST: HiL, cyber, & interop considerations, smart grid

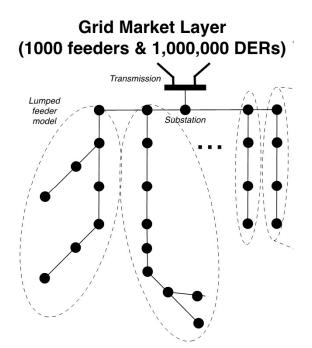
Dr. Dhananjay Anand

Con Edison (ORU): utility partner, validation (data & models)

• Andrew Reid, Joe White, and Mike McGuire

Project Outcome

- Project outcome: a technology that unleashes the flexibility of controllable grid assets and, in the process, reinvents the utility from a volt/VAR-focused loss-minimizer into a full-service energy coordinator.
 - Aligns well with New York state's REV's notion of Distributed System Platform (DSP) and Distribution System Operator (DSO)
 - Report of the Market Design and Platform Technology Working Group (2015)


Technical objectives:

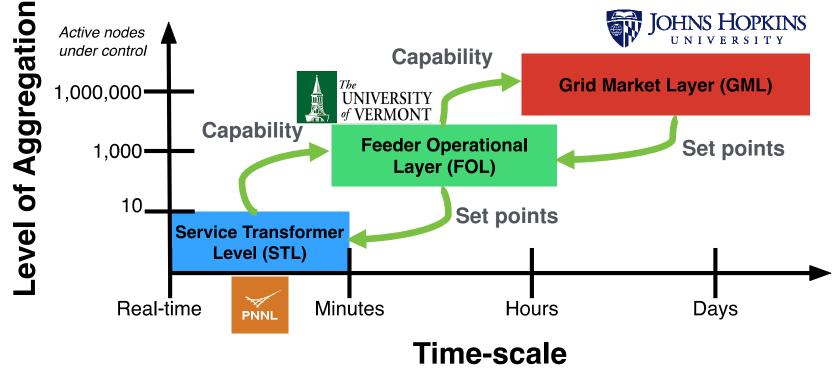
- 1. **Technology development:** extend optimization and control tools and algorithms to facilitate integrated management of grid constraint and heterogeneous end-use resources
- Full-scale hardware validation: implement and validate technology at NIST's Smart-Grid Test Bed using hardware-in-the-loop simulation for normal and contingency operation for >100 physical active nodes
- **3. Large-scale software validation:** implement technology and validate technology with PNNL's GridLab-D with >1,000,000 active nodes over a one-year representative period
- 4. Benefit assessment: Assess the financial and reliability benefits for various levels of variable renewable generation, flexible load, and energy resources.

Summary of Approach

U.S. DEPARTMENT OF

 Decompose operation across spatio-temporal scales and use corrective control to manage uncertainty

Manage resources economically


Manage network optimally

Manage resources dynamically

Summary of Approach

U.S. DEPARTMENT OF

Decompose operation across spatio-temporal scales and use corrective control to manage uncertainty

Need to study different time-scale separations and levels of aggregation

Service Transformer Layer (STL)

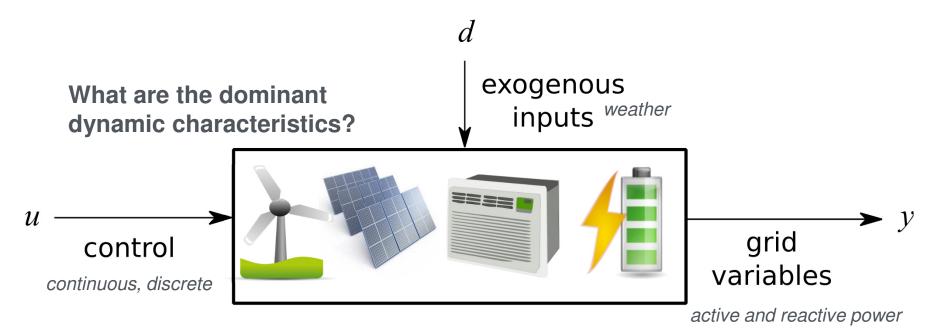
- Each STL element represents 10-50 flexible devices at service level transformer
- Goal: characterize & model dynamical aggregated resources at service transformer and quantify modeling uncertainty
 - Aggregate modeling constructs an uncertain but dispatchable flexible energy resource
 - Leverage existing expertise at PNNL
 - o Uncertainty quantification, dynamic aggregate models, constraint-aware controller design

Aggregated controllable load

U.S. DEPARTMENT OF

ENERGY

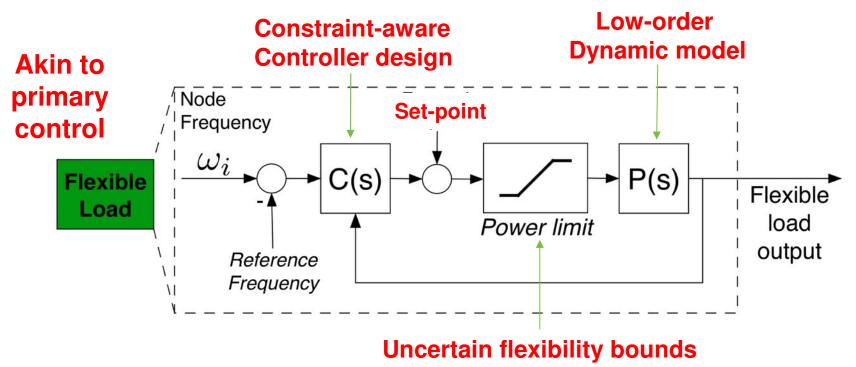
Energy Efficiency &


Renewable Energy

Service Transformer Layer (STL)

Energy Efficiency & Renewable Energy

- STL element represents 10-50 flexible devices below service level transformer
- Goal: characterize & model dynamical aggregated resources at service transformer and quantify modeling uncertainty
 - Aggregate modeling constructs an uncertain but dispatchable flexible energy resource
 - Leverage existing expertise at PNNL
 - o Uncertainty quantification, dynamic aggregate models, constraint-aware controller design



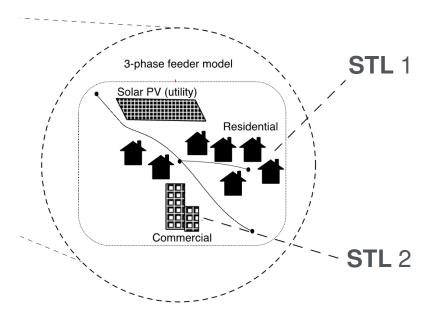
Service Transformer Layer (STL)

Energy Efficiency & Renewable Energy

- STL element represents 10-50 flexible devices below service level transformer
- Goal: characterize & model dynamical aggregated resources at service transformer and quantify modeling uncertainty
 - Aggregate modeling constructs an uncertain but dispatchable flexible energy resource
 - Leverage existing expertise at PNNL
 - o Uncertainty quantification, dynamic aggregate models, constraint-aware controller design

Feeder Operational Layer (FOL)

- 2. Optimize feeder asset schedules to regulate bidirectional unbalanced power flows and voltages under net-load uncertainty
- Distribution System State Estimator (DSSE)
 - Robustly estimate nodal voltages and topology changes in near real-time
- Full unbalanced grid optimization
 - Considers mechanical switching (legacy) devices and flexible STL elements on different time-scales
 - Ensure robust voltage profiles under uncertainty of available net-load resources
 - Optimize fast flexible STL elements for corrective control
 - Techno-economic optimization: balance operational roles (volt/VAr/losses) with market incentives (revenue)



U.S. DEPARTMENT OF

ENERGY

Energy Efficiency &

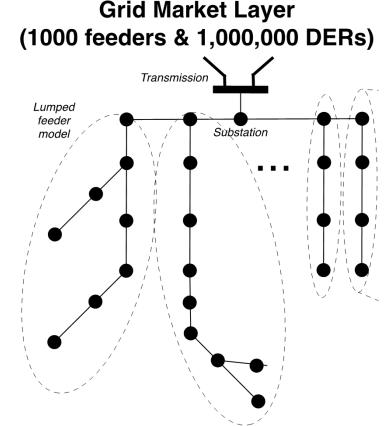
Renewable Energy

Feeder Operational Layer (FOL)

Energy Efficiency & Renewable Energy

2. Optimize feeder asset schedules to regulate bidirectional unbalanced power flows and **Dispatch discrete** Robust voltages under net-load uncertainty control assets "voltage positioning" (MILP) Distribution System State Estimator (DSSE) ** Robustly estimate nodal voltages and Tracking topology changes in near real-time techno-economic STLs run separate observer to provide states references **Dispatch continuous** Full unbalanced grid optimization * control assets Considers mechanical switching (legacy) (NLP) 3Ø devices and flexible STL elements on different time-scales • Ensure robust voltage profiles under uncertainty of available net-load resources Optimize fast flexible STL elements for corrective control Measure/Estimate • Techno-economic optimization: balance topology/states operational roles (volt/VAr/losses) with market (DSSE) incentives (revenue) Considers STL flexibility and very-shortterm solar forecasts

Feeder Operational Layer (FOL)



Energy Efficiency & Renewable Energy

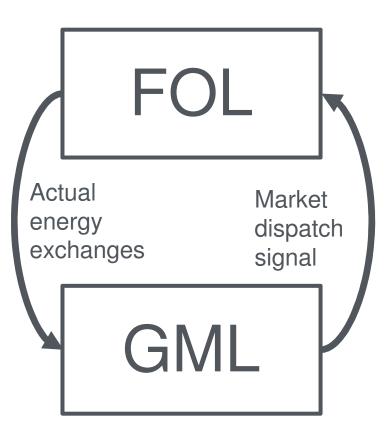
2. Optimize feeder asset schedules to regulate bidirectional unbalanced power flows and **Dispatch discrete** Robust voltages under net-load uncertainty control assets "voltage positioning" (MILP) Distribution System State Estimator (DSSE) ** Robustly estimate nodal voltages and Tracking topology changes in near real-time techno-economic STLs run separate observer to provide states references **Dispatch continuous** Full unbalanced grid optimization * control assets Considers mechanical switching (legacy) (NLP) 3Ø devices and flexible STL elements on different time-scales • Ensure robust voltage profiles under uncertainty of available net-load resources **Optimize fast flexible STL elements for** corrective control Measure/Estimate • Techno-economic optimization: balance topology/states operational roles (volt/VAr/losses) with market (DSSE) incentives (revenue) Considers STL flexibility and very-shortterm solar forecasts

Grid Market Layer (GML)

- 3. Coordinate 100s of feeders via grid market layer (GML) to consider optimal economic dispatch of netload resources
- Must consider
 - A. physical inter-feeder coupling constraints
 - B. different time-scales of (slower) market dispatch and (faster) feeder balancing operations/regulation needs.
 - Focuses on coordinating energy exchanges
- Contingency mode updates feeder dispatch when triggered by any feeder that is unable to self-regulate and provide expected resources

U.S. DEPARTMENT OF

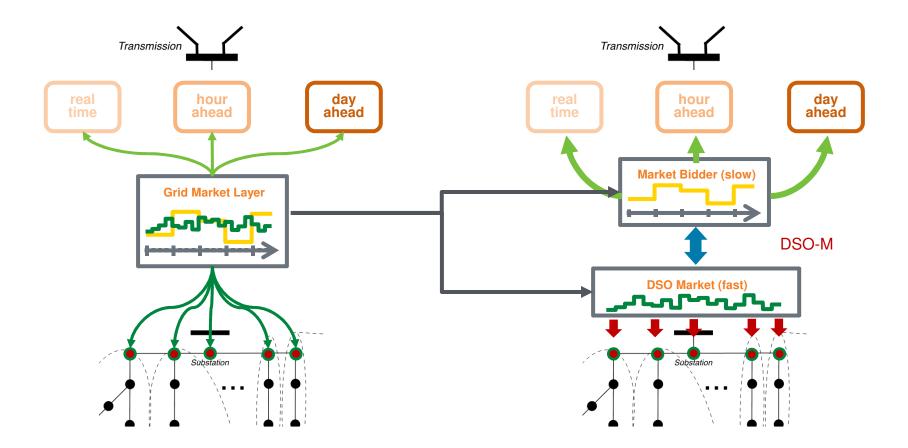
ENERGY


Energy Efficiency &

Renewable Energy

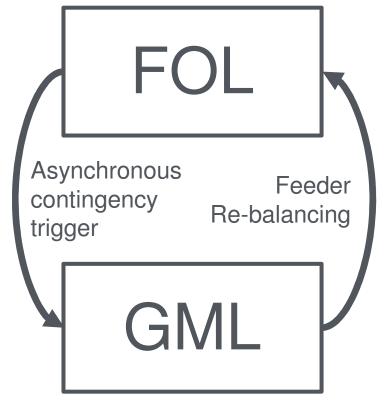
Optimally coordinate feeder resources

Grid Market Layer (GML)


- 3. Coordinate 100s of feeders via grid market layer (GML) to consider optimal economic dispatch of netload resources
- Must consider
 - A. physical inter-feeder coupling constraints
 - B. different time-scales of (slower) market dispatch and (faster) feeder balancing operations/regulation needs.
 - Focuses on coordinating energy exchanges economically
- Contingency mode updates feeder dispatch when triggered by any feeder that is unable to self-regulate and provide expected resources

U.S. DEPARTMENT OF

ENERGY


Multi-timescale Decomposition in GML

Grid Market Layer (GML)

- 3. Coordinate 100s of feeders via grid market layer (GML) to consider optimal economic dispatch of net-load resources
- Must consider
 - A. physical inter-feeder coupling constraints
 - B. different time-scales of (slower) market dispatch and (faster) feeder balancing operations/regulation needs.
 - Focuses on coordinating energy exchanges
- Contingency mode updates feeder dispatch when triggered by any feeder that is unable to self-regulate and provide expected resources

Technical Development Plan

Energy Efficiency & Renewable Energy

Year 1 Dynamic Modeling UQ Robust DSSE Deterministic Opti Dispatch Deterministic Decomposition

Year 2 Dynamic controller design Stochastic Opti Dispatch Stochastic Decomposition

Year 3 Quantify flexibility tradeoffs Market benefit analysis

Energy Efficiency & Renewable Energy

UVM leads project (Almassalkhi, Ossareh, Racherla)

- power engineering, optimization, control theory, data analytics
- open-source software & HiL validation
- JHU: optimization & markets (Gayme, Mallada)
 - Optimization, dynamical systems, and energy market design
- PNNL: flexible load modeling (Kundu)
 - Power engineering, control, modeling, HiL & large-scale validation
- NIST: HiL & cyber validation, dynamical systems
- Con Edison (ORU): utility partner, validation (data+models)

Energy Efficiency & Renewable Energy

End of Year 1 Build "Year 2030" grid scenarios with real data and input from ConEd (ORU)

Simulate each level separately

Early Year 2 Small-scale coupled software validation (GridLab-D @ UVM)

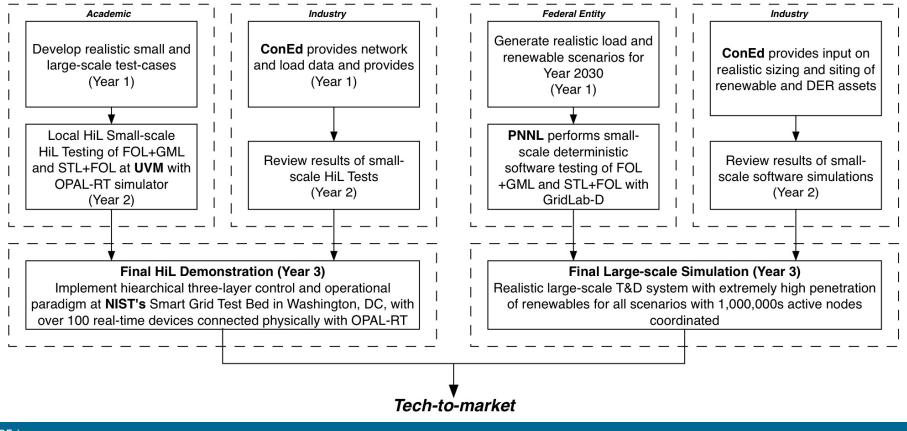
RT @ UVM/NIST)

Late Year 2

Small-scale coupled

HiL validation (OPAL-

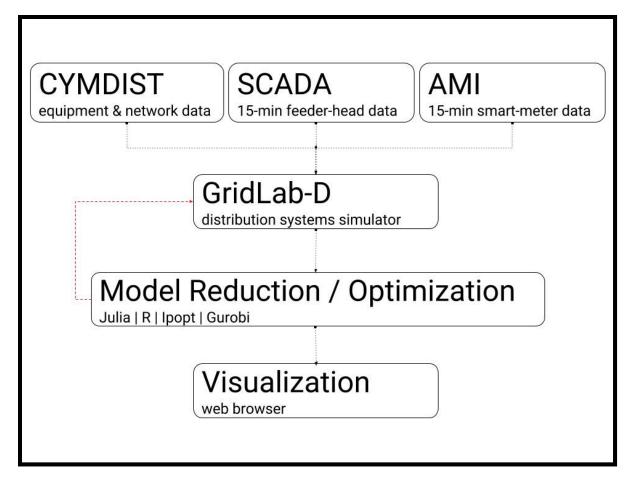
End of Year 3 Full-scale HIL and large-scale software validations


U.S. DEPARTMENT OF ENERGY Ren

Energy Efficiency & Renewable Energy

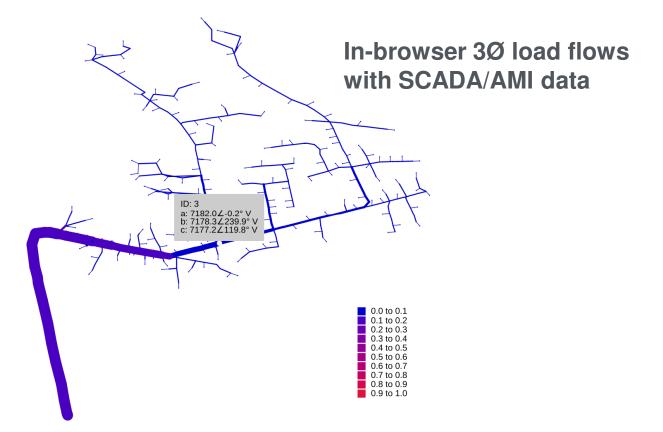
Hardware-in-the-loop testing

Large-scale simulations



U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy


UVM's interactive distributed grid analytics (iDGA) platform

Energy Efficiency & Renewable Energy

UVM's interactive distributed grid analytics (iDGA) platform

Comparison with FOA Objectives

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Computation cycles & device time res

- FOL is main challenge but < 1 minute
- SOCP-hot start solution → secs on Gurobi
- NLP 3Ø solver from hot-start → secs on IPOPT for good feasible solution
- Leverage feedback to speed up solve time

Cyber security standards

- Inf-TESLA multicast auth @ NIST
 - Can bake into simulation environment
- Leverage PNNL projects on cybersecure integration of DERs (e.g., B2G test-bed)

Response time

- STL responds to small imbalances in RT
- STL responds to set-point changes < 10s
- FOL responds to set-point changes < 1m
 - These are all within specs

DER sensing and control standards

- PNNL's VOLTTRON allows energy mngt
 - EV, HVAC, building loads, DERs
- NIST Testbed set up for DER compliance tests
 - Well-suited for P-Q control algos
 - Helpful for STL and FOL (incl. dynamics tests)

Comparison with FOA objectives

Energy Efficiency & Renewable Energy

Performance Metric	FOA Metric	Proposed Target
Solution components	Subset of layers	Device & Enhanced layers
HiL Validation	$> 10^2$ physical nodes	$> 10^2$ with OPAL-RT
Software Validation	$> 10^6$ virtual nodes	$> 10^{6}$ with GridLab-D
Scalability (Feeders)	1000	>1000
Scalability (Active nodes)	1,000,000	>1,000,000
Computation cycle (Real-time)	1 minute	< 1 minute
Computation cycle (Planning)	5 minutes	< 5 minutes
Device Time resolution (Real-time)	1 second	1 seconds
Device Time resolution (Planning)	1 minutes	1 minutes
Response time (local: STL)	< 10 seconds	Real-time
Response time (network: FOL)	< 30 seconds	< 30 seconds
Response time (system: GML)	< 1 minute	< 1 minutes
DSSE Observability	>99%	100%
Power Flows	Multiple substations	Multiple substations
OPF Objectives	Techno-economic	Techno-economic
Predictive Control	Real-time planning	Real-time planning
Prescriptive Control	Operational planning	Operational planning

Thank you! Questions? Comments?

Energy Efficiency & Renewable Energy

Mads Almassalkhi University of Vermont (UVM)

malmassa@uvm.edu

@theEnergyMads

Dennice Gayme Johns Hopkins University (JHU)

dennice@jhu.edu