ENERGISE Program Kickoff

DOE Award #: **DE-EE0008003**

DEEP SOLAR
Data Driven Modeling and Analytics for Enhanced
System Layer ImPlementation

Viktor K. Prasanna University of Southern California October 11, 2017

Project Team

Name	Role	Main Responsibilities (High level tasks/sub-tasks)
Viktor K. Prasanna (USC)	Pl	 Work closely with the team members to meet the milestones and deliverables within budget and schedule Co-ordinate and host the kick-off meeting, quarterly review meetings and annual meetings Technical lead on developing predictive analytics and real-time control software
Rajgopal Kannan (USC)	Co - PI	 Work closely with the students Machine learning algorithms Software development of forecasting models Stochastic analysis and optimization
Valentino Tiangco (SMUD)	Subcontractor	 Utility guidance on interconnection standards, distribution grid issues and interoperability requirements Utility perspective on distributed generation and renewable energy programs

Project Team

USC

- Viktor K. Prasanna
- Rajgopal Kannan
- Ajitesh Srivastava
- Athanasios Rompokos
- Atila Orhon
- Chi Zhang
- Chung Ming Cheung
- Sanmukh Rao Kuppannagari

SMUD

- Valentino Tiangco
- Elaine Sison-Lebrilla

Demonstration and Data Sets: SMUD

Sacramento Municipal Utility District (SMUD)

- Not for Profit, Publicly Owned Utility
- Sacramento County (small part of Placer County)
- Almost 600,000 Customers; 1.4 Million Population
- Record Peak Demand = 3,300 MW
- 5th Largest in CA and 6th Largest in the U.S.
- Manages Balancing Authority in Northern California (BANC)
- Low Rates, Innovative & Green
- 1st in customer satisfaction survey for the last 14 consecutive years (J.D. Power & Associates Survey)

Project Goals

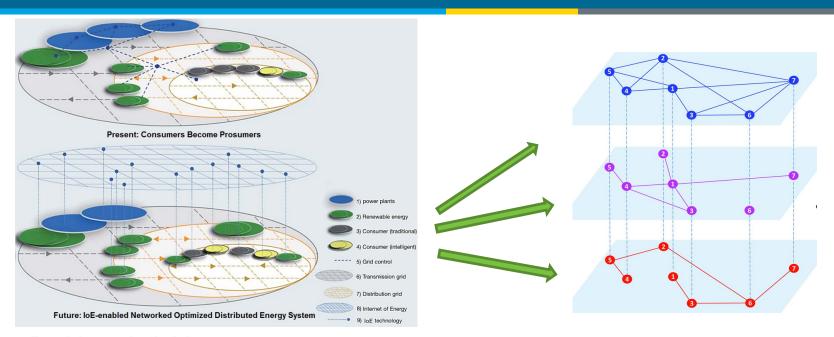
- Modeling and Optimizations to Enable Deep Solar Penetration
 - > 100% relative to peak
 - > 250% relative to day time minimum load
- Fast Data Analytics for Real-time Operations
 - Grid Size: 1000 to 1 million node
 - Response time: <1 min for short term, < 5min for long term planning
- Software for Situational Awareness & Operational Planning
 - Preparation for spontaneous condition changes

5|

Project Approach

- Fast, robust predictive analytics for accurate load and generation prediction
- Real time scalable **optimization** framework for smooth grid operation
- Dynamic "What-If" Scenario Analysis for operational planning

6 |


Major Innovations

- ❖ Live Energy Map (LEM)
- Predictive Analytics
- Optimization Framework
- Data Modeling, Forecasting & Imputation
- ❖ Parallelization for Real-Time ESL Control

Live Energy Map (LEM)

Problem definition

Effective representation of energy components

Challenges

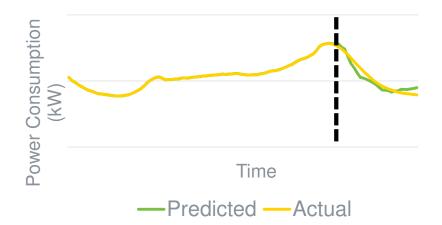
Granularity, support for fast analytics, scalability

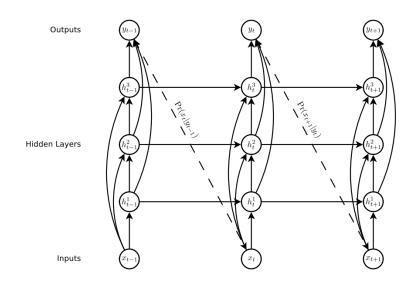
Approach

- Multilayered heterogeneous, directed, time varying, labeled network representation to capture the physical, communication, logical network, etc., to fully express essential grid attributes
- "Incremental" and "evolving" graph analytics algorithms for real-time computation of effect of change in a node or a link on the entire system

Predictive Analytics

Problem definition


- Solar generation prediction
- Short term load forecasting


Challenges

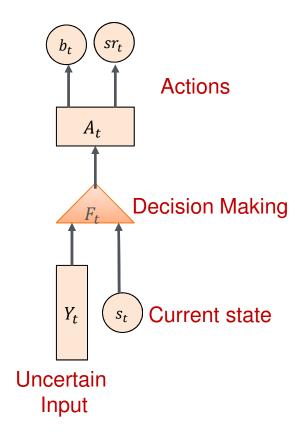
- Missing data
- Various time granularity of data

Approach

- Model distribution of data with mixture models
- Granger-causality Graph representation to capture the node dependency
- Recurrent Neural Networks

Optimization Framework

Problem definition


- Supply Demand matching in each interval
- Minimize cost of grid operations

Challenges

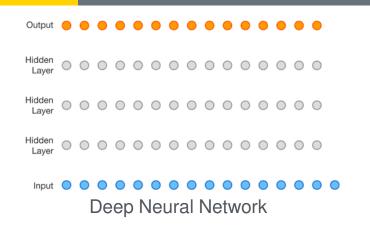
- Uncertainty in solar output due to weather conditions
- Error prone prediction

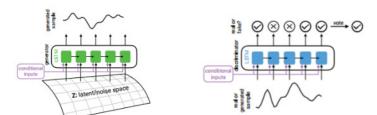
Approach

 Markov Decision Process based sequential decision making framework to minimize expected cost under input uncertainty Sequential Decision Making at time *t*

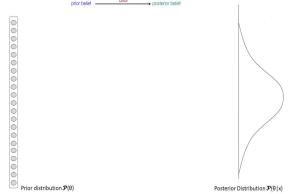
Data Modeling, Forecasting & Imputation

Problem definition


- Arbitrary Horizon Forecasting
- Synthetic Data Generation


Challenges

- Computational Complexity need parallel and efficient extensions to State-of-the-art models
- Models that learn from small datasets


Approach

- Fully Visible Belief Neural Networks
- Generative Adversarial Networks
- Markov Chain Monte Carlo (MCMC)

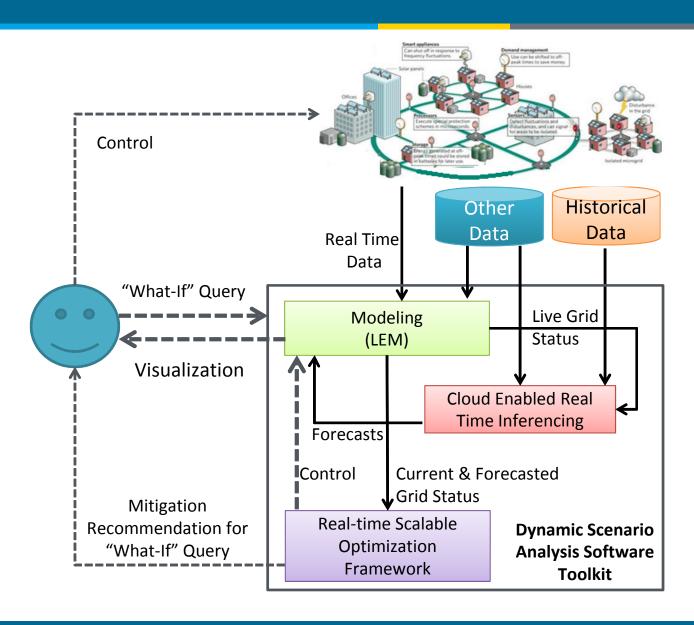
Generative Adversarial Networks

MCMC Metropolis-Hastings algorithm

Parallelization for Real Time ESL Control

Problem definition

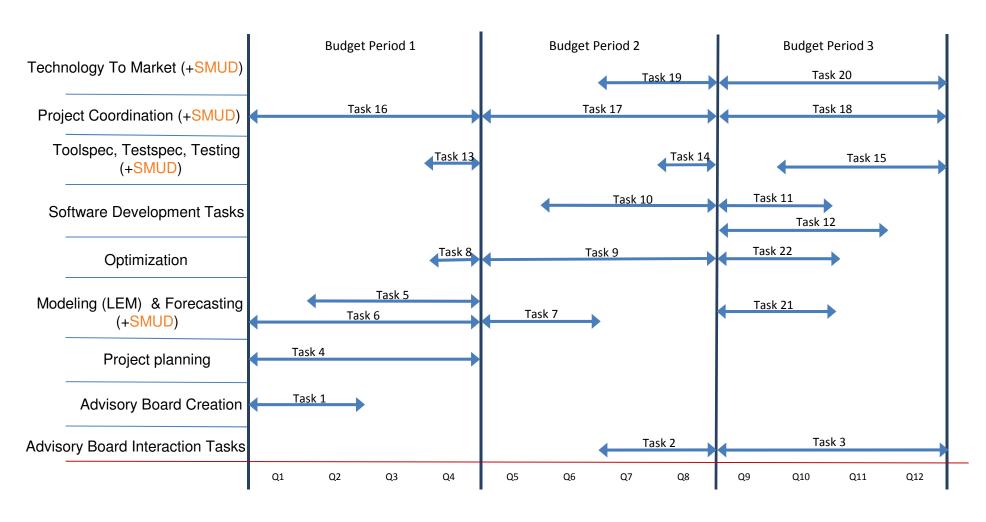
 Real time operation of Dynamic Scenario Analysis toolkit to meet ENERGISE response time targets


Challenges

- ML algorithms parallelization
- Computational complexity of optimization algorithms

Approach

- Partitioning the LEM representation of distribution network (graph representation)
- Develop cloud enabled parallel algorithms


Project Architecture

Main Project Tasks/Subtasks

TIMELINE

Project Milestones/Deliverables

- Development of a mockup of Proof-Of-Concept (POC) software for LEM
- Development of accurate load/generation forecasting models
- Development of a functional Dynamic Scenario Analysis Software Toolkit with integration of the LEM, forecasting and optimization algorithms
- Functionality and scalability demonstration of the Dynamic Scenario Analysis Software Toolkit (+SMUD)

Project Milestones/Deliverables

Budget Period 1

- Report on forecasting model
- Draft Market Transformation Plan
- Cybersecurity and Interoperability Plans (+SMUD)
- IP Agreement Plan

❖ Budget Period 2

- Report on the Dynamic Scenario Analysis Software Toolkit integrated with the LEM, forecasting and optimization algorithms
- Report on the requirements of the market
- Updated Cybersecurity and Interoperability Plans (+SMUD)
- Updated Market Transformation Plan

Final Deliverable

 Functionality and scalability demonstration of the Dynamic Scenario Analysis Software Toolkit (+SMUD)

High Risks & Mitigation

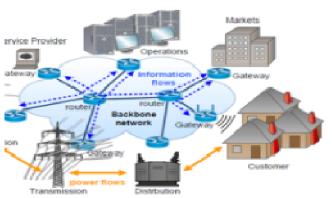
Risk	Mitigation Strategy	
LEM model accuracy	Development & testing using network and operational data from SMUD	
Forecasting models accuracy	Validation using network and operational data from SMUD	
ESL software scalability	Task development on parallel algorithms Methods implementation in a cloud-enabled software platform	
ESL meets ENERGISE metrics	Enhancement of ESL's computational capability Design changes based on testing	

17 |

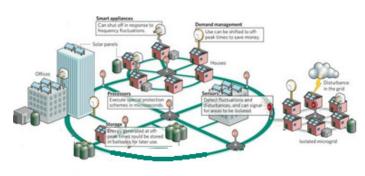
Cybersecurity & Interoperability

- Fast graph-theoretical optimization algorithms minimizing protection cost while ensuring situational awareness
- Remove/Mitigate cloud computing model risks
- Interaction with SMUD and advisory committee
- Follow established interface standards to develop interoperable software

Recent Progress


To Appear in ACM BuildSys '17, Submissions to ISGT '18.


- "Temporal Ensemble Learning of Univariate Methods for Short Term Load Forecasting," C. Cheung, R. Kannan, V. K. Prasanna
 - Novel ensemble learning method partitioning with temporal features
 - 11.2% and 30% decrease in mean absolute percentage error for kernel regression and support vector regression respectively
- "Optimal Net Load Balancing in Smart Grids with High PV Penetration,"
 - S. Kuppannagari, R. Kannan, V. K. Prasanna
 - Unified solar and load curtailment framework
 - Linearly in number of nodes and intervals, Bounded Error Guarantee: $(1 + \epsilon)$ factor
- * "NO-LESS: Near Optimal Curtailment Strategy Selection Algorithm for Net Load Balancing in Micro Grids," S. Kuppannagari, R. Kannan, V. K. Prasanna
 - Curtailment selection with fairness and strategy switching overheads
 - Bounded Error Guarantee: $(1 + \epsilon)$ factor
- "Risk Aware Net Load Balancing in Micro Grids with High DER Penetration,"
 - S. Kuppannagari, R. Kannan, V. K. Prasanna
 - Sequential decision making for storage scheduling for net load balancing under prediction uncertainty


Concluding Remarks

Today

Data Science
Smart Grid
Parallel Computing

2030, Cognitive Grid

DEEP SOLAR: <u>deepsolar.usc.edu</u>

DSLAB Team: dslab.usc.edu