ENERGISE Program Kickoff

DOE Award #: DE-EE0008001

Integration of a DER Management System in Riverside University of California, Riverside

October 11, 2017

Project Team

Name	Role	Main Responsibilities
University of California, Riverside	PI	Project Management, Test Site, Algorithm Development
Riverside Public Utilities	Subcontractor	Test Site
Smarter Grid Solutions	Subcontractor	Framework Development, Field Implementation, Test Planning
Lawrence Berkeley National Lab	Subcontractor	Algorithm Development, Test Planning
Pacific Gas & Electric	Subcontractor	Hardware-in-the-Loop Testing, Scaled-up Simulation
Lawrence Livermore National Lab	Subcontractor	Algorithm Development
Grid Bright	Subcontractor	Data Management, Software Interoperability, Cyber Security

Project Goals

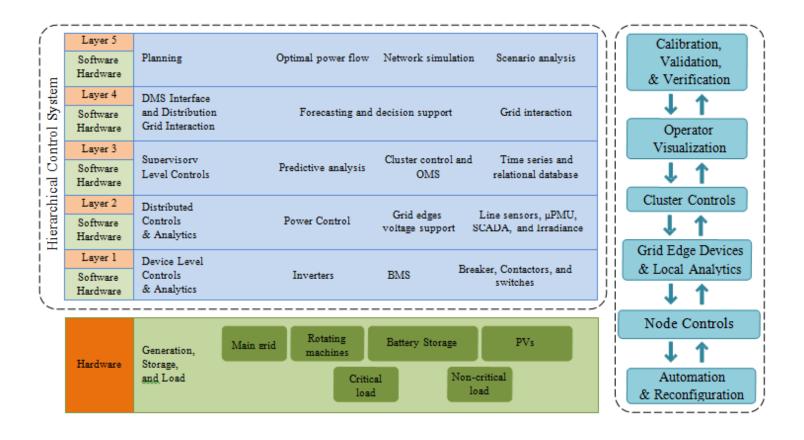
Develop and validate a DER management system (DERMS).

- Contribute to and benefit from:
 - Topology and Phase Identification
 - Voltage/VAR Control Management
 - Load and Power Flow Balancing
 - Distribution System State Estimation

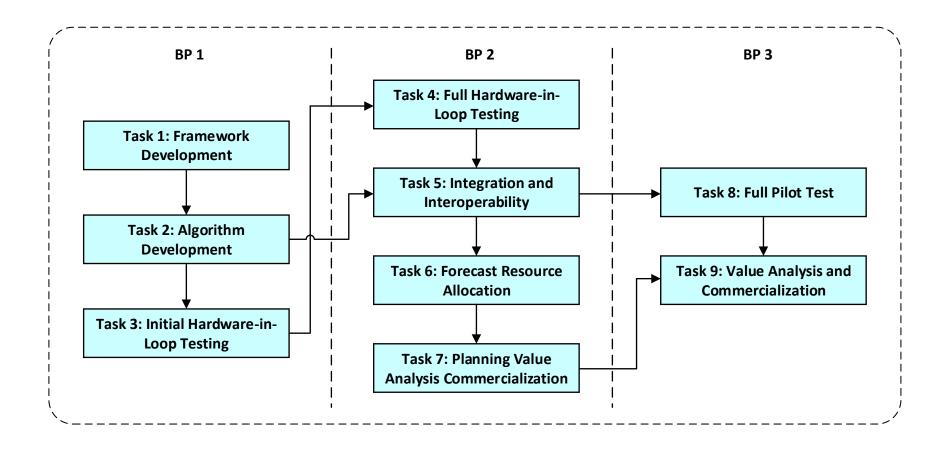
❖ Energise Area 1 Project: Near Term with Field Demonstration

Major Innovations

The monitoring and control platform is multi-objective and hierarchical (Next Slide: Active Network Management).


Distribution nodes are enabled to act as load and/or voltage control buses to contribute to project goals (Previous Slide).

The algorithms will utilize distribution-level synchrophasor data (μPMUs), advanced line sensors, and other available sensors to infer network conditions that otherwise would have to be directly measured or computed from a model.


Major Innovations

❖ Active Network Management (ANM) Platform:

Main Project Tasks

Project SubTasks – BP 1

❖ Task 1.0: Framework Development (M1 – M9)

- ST 1.1: High level Function Definition & Communication Architecture
- ST 1.2: Data, Software, Interoperability, Cybersecurity Plan
- ST 1.3: ANM Platform Requirements Specification
- ST 1.4: Design and Develop Network-Level Controller Framework
- ST 1.5: Design and Develop Hierarchical Controller Framework
- ST 1.6: Application Container Development
- ST 1.7: Cybersecurity Analysis of Sensing, Control, Communications

Project SubTasks – BP 1

❖ Task 2.0: Algorithm Development (M1 to M12)

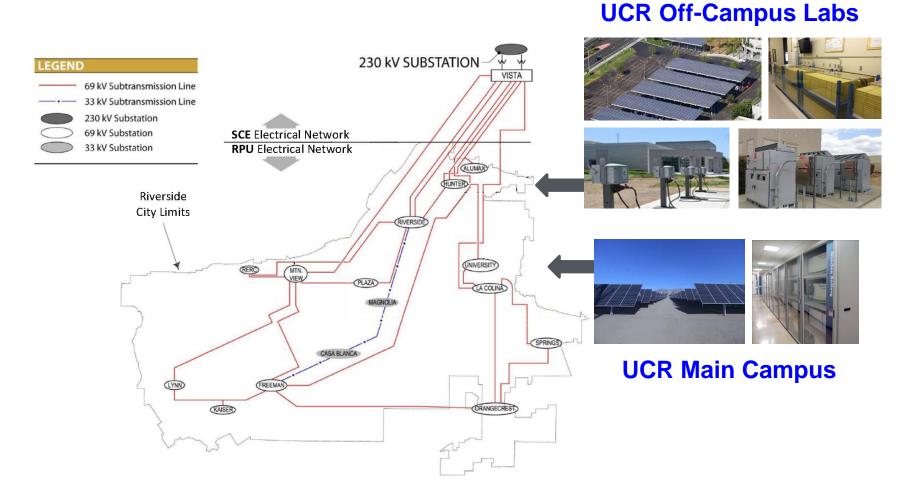
- ST 2.1: Scenario and Objective Function Definition
- ST 2.2: Algorithm Development for Grid Reconfiguration
- ST 2.3: Algorithm for Top-level Optimization

Project SubTasks – BP 1

❖ Task 3.0: HIL Testing Setup and Initial Testing (M3 – M12)

- ST 3.1: Simulation/Validation Plan Development
- ST 3.2: Model Data Integration
- ST 3.3: Integrate ANM platform with HIL test yard
- ST 3.4: Single substation HIL test

Project Milestones/Deliverables

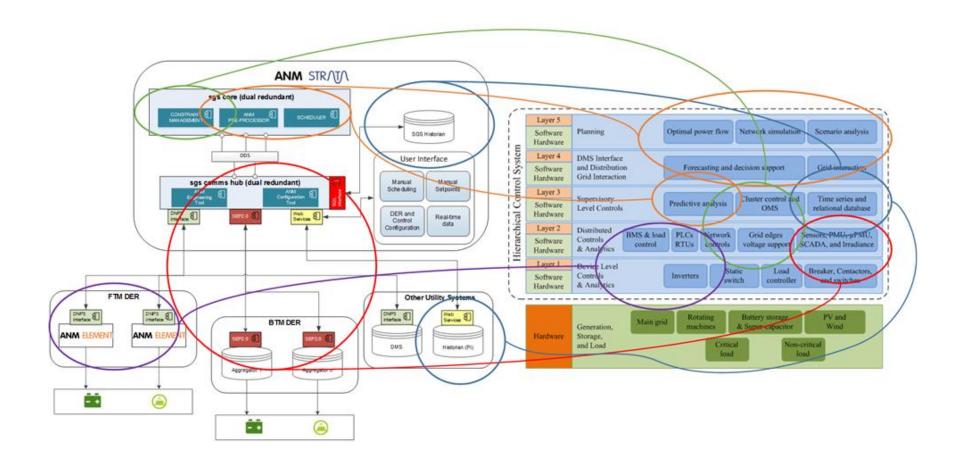


Individual algorithms will be integrated into ANM platform.

- The algorithms will be tested at different levels:
 - IEEE Test Systems
 BP 1
 Hardware-in-Loop Simulations
 Scaled-up Simulations
 - Real-World Field Implementation and Demonstration

Project Milestones/Deliverables

Potential Field Demonstration Sites:


Project Milestones/Deliverables

❖ BP 1 Deliverables:

- Framework Function and Communication Definition Specification
- Framework Design and Implementation Requirement Specification
- Overall Project Cyber Security and Interoperability Plan
- Algorithm Development and Performance Assessment Report
- HIL Site Acceptance Specification and Test Plan

Project Architecture

High Risks & Mitigation

- ❖ SubTask 1.7 (Quarter 3) will assess key risk areas:
 - Such as loss of control, data confidentiality, security, etc.
 - Cybersecurity and interoperability requirements will be updated
 - Application container platform will be updated.

Milestone 1.7.1: Risk Assess & Risk Mitigation

Cybersecurity & Interoperability

- Make inventory of all components in solution design.
- Identify interfaces and integrations of new components.
- Identify technical protocols and data exchange mechanisms.
- Identify best practice, standard approach, or alternative approach.
- Create a threat matrix for each component and interface.
- Outline security, monitoring, and recovery plan.