Phasor-Based Control for Scalable Photovoltaic Integration

ENERGISE Kickoff Meeting October 11, 2017

Sascha von Meier & Elizabeth Ratnam CIEE/BECI UC Berkeley

Project Team

California Institute for Energy and Environment (CIEE) Berkeley Energy and Climate Institute (BECI) UC Berkeley

Lawrence Berkeley National Lab (LBNL)

University of Michigan

OPAL-RT

GridBright

Doosan GridTech

Pacific Gas & Electric

Carl Blumstein Sascha von Meier Liz Ratnam

Jhi-Young Joo

Dennis Bernstein

Sudipta Chakraborty

Ali Vojdani

Farshid Shariatzadeh

Harby Sehmar

CIE

California Institute for

Energy and Environment

Project Goal

This project's goal is to develop a Phasor-Based Control (PBC) framework for grid resources that

- can manage arbitrarily high penetrations of variable DER
- is agnostic to devices, controllers, optimization criteria
- is completely scalable at both local and supervisory layers
- will meet or exceed all performance targets of ENERGISE FOA.

Distribution phasor measurement (micro-synchrophasor) infrastructure our team has already built and tested

Power Standards Lab micro-PMU developed through ARPA-E funded project DE-AR 0000340

Illustration of PV current, substation current, voltage phase angle difference for a large PV array in Southern California

μPMU measurements viewed on Berkeley Tree Database (BTrDB) Multi-resolution Plotter

Power Standards Lab micro-PMU developed through ARPA-E funded project DE-AR 0000340

Conventional approximation in transmission context where X >> R relating real power flow to phase angle difference

Power Standards Lab micro-PMU developed through ARPA-E funded project DE-AR 0000340

$$|V_{k-1}|^2 - |V_k|^2 \approx 2(R_k P_k + X_k Q_k)$$

$$\delta_{k-1} - \delta_k \approx \frac{X_k P_k - R_k Q_k}{|V_k||V_{k-1}|}$$

Approximations derived from DistFlow equations for radial feeders by Dan Arnold, Roel Dobbe and Michael Sankur, UCB

PBC in Context

Visualization of voltage phase angle contours across the transmission grid "Heat map" indicates system stress: power flows *and* network impedances live map by University of Tennessee, Knoxville: fnetpublic.utk.edu

PBC in Context

Transmission system operators already think about power flow in terms of phasor profiles.

Distribution systems are becoming more like transmission networks.

We already control resources directly based on physical grid state, where feasible to date:

- frequency droop control
- volt/VAR control (reactive power optimization)

But we don't yet control based on phase angle because:

- *historically, there was no way to measure phasors directly*
- energy value has dominated over capacity and stability constraints, so grid participants think of grid services in terms of kWh

Work Plan: High-level summary by project year

Year 1

- validate PBC as a practical method for controlling multiple resources on a single distribution feeder
- design subsequent test cases

Year 2

- demonstrate scalability of PBC by extending simulation scenarios to increasing number of nodes on multiple interconnected distribution feeders
- develop S-PBC algorithms
- implement L-PBC on actual controller

Year 3

- test performance of physical devices in the control loop at FLEXLAB
- simulate PBC impacts on large network
- disseminate results
- commercialize local controller

Work in Progress as of October 2017

Defining Test Cases

Workshop held 19 Sept 2017 with 18 team members to gather requirements for PBC test cases.

PBC Objectives & Strategy Document

First draft is being prepared based on four distribution feeder test cases for supervisory control.

Build Test Models

Starting with the IEEE 13 node model, we are identifying modifications in the Opal-RT and GridLAB-D implementations. Looking to incorporate solar PV and battery storage into the IEEE 13 node models on both platforms.

Cybersecurity and Interoperability Plans

In progress, system architecture drafted.

Define L-PBC

Identified battery operating parameters and constraints, with preliminary simulation underway for local PBC.

Compatibility Assurance

Investigating L-PBC algorithm requirements and compatibility with Opal-RT and the DG:IC platform capabilities.

Four exterior testbeds in front of Building 90

- Provide space for HIL testing with easily accessible power, teledata, and data acquisition infrastructure
- Leverage existing µPMU sensor infrastructure on LBNL campus

https://flexlab.lbl.gov/

FLEXLAB

Risks and Mitigation: General risks for DER optimization

Risk: Inadequate distribution system model information *Mitigation by PBC:*

- adaptive control to accommodate unknowns
- high-precision µPMU sensing increases network observability

Risk: Loss of communications; Cyber-attacks *Mitigation by PBC:*

- minimal number of communication points
- safe and stable local control in absence of supervisory updates

Specific Risks and Mitigation

Risk: µPMU accuracy compromised by transducer errors Mitigation: online transducer calibration

Risk: Cost of sensor infrastructure, since required number and optimal locations of µPMUs is still unknown

- *Mitigation:* reduce installation cost by allowing secondary-side sensor nodes
 - theoretically investigate optimal and minimal placement ٠ strategies

Risk: Robustness of linearized, approximate OPF

Mitigation: assess limitations of OPF algorithm early and systematically

Risk: Complexity of adaptation with multiple controllers under system changes Mitigation: Simulation-based studies of controller priorities

Risk: Controlled phasor partitioning for large systems is a completely new concept and may be prone to error propagation **Mitigation:** techniques for minimizing errors from numerical integration