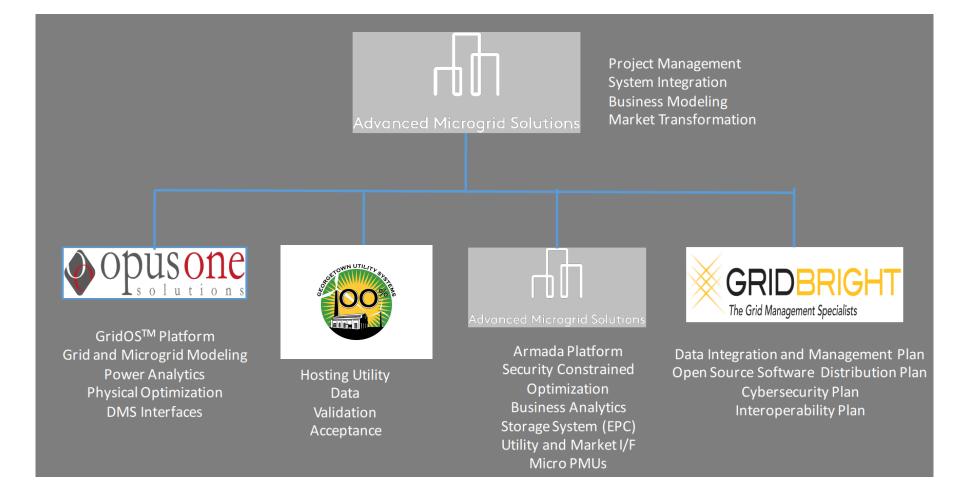
ENERGISE Program Kickoff

DOE Award #: DE-EE0008010


Security Constrained Economic Optimization of PV and Other Distributed Assets

Advanced Microgrid Solutions

October 11, 2017

Project Team

Project Goals

U.S. DEPARTMENT OF Energy Renew

- Demonstrate a comprehensive integrated solution that co-optimizes aggregated solar and storage to maximize:
 - Site host energy benefits,
 - Utility grid services, and
 - Wholesale energy market services.
- Implement a security constrained economic optimization of DER dispatch that includes physical grid constraints, performance, load needs, and cost reduction.
 - Enable cost effective integration of high penetrations of distributed PV in the power grids of the future, while meeting the objectives of reliability, resiliency and affordability.
- Demonstrate that these methods are scalable at massive levels of PV penetration

Major Innovations

U.S. DEPARTMENT OF

- Currently, DERs are integrated with the grid on an ad-hoc basis; opportunities to self-mitigate impacts or provide grid services through optimized aggregation are lost.
- This project will provide an integrated solution to systematically integrate DER and obtain the greatest grid benefits at the lowest cost.
- Major innovations include:
 - Enabling a storage-backed building microgrid to function as an intelligent network node, co-optimizing PV, storage, other DERs and the building load.
 - Developing an enhanced grid system layer through utilizing advanced sensors with real-time distribution system situational awareness, topology estimation and advanced analytics.
 - Prove out how coordinated dispatch DER can improve power flow efficiency and system hosting capacity.

Main Project Tasks/Subtasks

Develop Microgrid Optimization Algorithm

Simulate, model and factory test grid edge optimization solution for a microgrid that incorporates: PV, EV chargers, back-up generation, battery energy storage and other systems.

Deploy Utility Microgrid Energy Storage System

Construct and commission a battery-centric microgrid at GUS' Westside Service Center to pair with its in place 132kV PV system.

Develop Feeder-level Power Flow Optimization

Develop a real-time system simulation platform interface with the Utility SCADA; demonstrate feeder-level optimization.

Simulated Scalability Demonstration

Demonstrate in simulation the scalability of the solution to a system that includes at least 10,000 active nodes, 3 microgrids, 10 feeders, 3 substations and high penetration PV.

Integration of Grid Services

Demonstrate solution of how the deployment of solar enabling technologies with stacked revenue streams/cost avoidance lowers the effective cost of deploying and integrating PV.

Develop Enhanced Grid-interactive Gateway

Create an intelligent gateway capable of micro-PMU (Phasor Measurement Unit) based sensing, 4 quadrant inverter control, revenue grade metering and local optimization.

Stakeholder Engagement and Dissemination of Project Results

Engage multiple utility cooperatives to ensure market relevance for the project.

Project Milestones/Deliverables

Energy Efficiency & Renewable Energy

- Budget Period 1:
 - Deliver completed test plan
 - Define baseline data
 - Complete power flow and OPF model for integration
 - Test gateway communications
- Budget Period 2:
 - Deploy DER and microgrid assets
 - Complete acceptance testing
 - Document scalability results and the extended solution deployment analysis
- Budget Period 3:
 - Complete one year of operation of microgrid and optimized DER dispatch

Project Architecture

Opus One

- Physically optimizes segments of the grid, before and behind the meter (e.g. Volt/VAR **Optimization**)
- Ensures that economic scheduling doesn't violate thermal or stability limits
- Monitors and controls grid assets

Monitor and

ontrol

Utility

Distribution

Management

System (DMS)

Feeder Constraint

Asset schedules

And Set Points

Microgrid

Controller

- **Optimizes** economically the distributed assets Interfaces with the customer, the utility and
- the markets Reduces customer energy costs
- Provides battery assisted grid services (e.g. CVR) Manages the battery

system and associated

Monitor and


Commercial

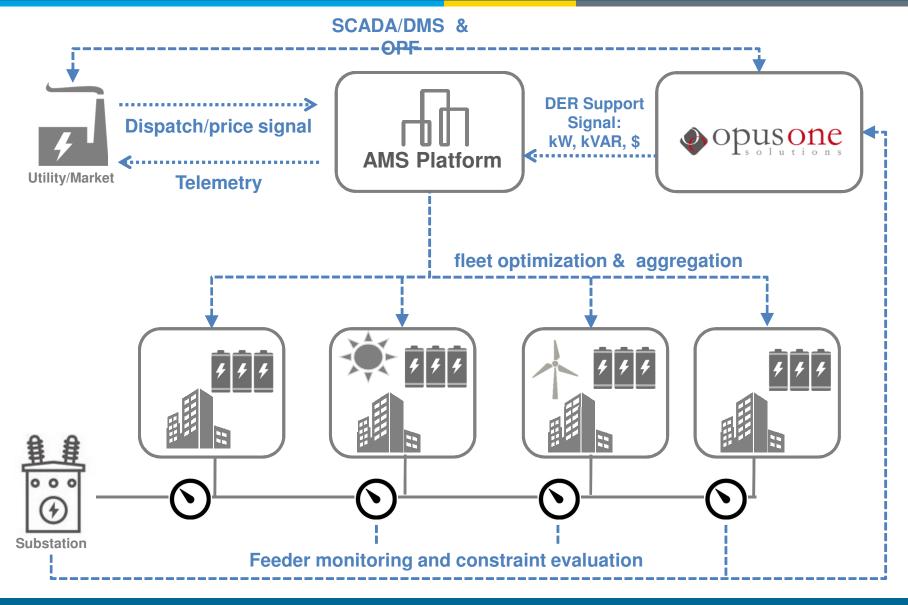
Buildings,

Industrial

Loads

Control

Demand Response Markets **Ancillary Services**


Increases Reliability

- Address lack of visibility of DERs at RTO/ISO/TSO level by aggregating DERs into virtual resource visible at grid-level
- Address lack of control/ planning for DERs by enabling DERs to reliably provide grid services

eere.energy.gov

Project Architecture

High Risks & Mitigation

Risk	Description	Mitigation Strategy
Project, personnel, and consumer health, safety and security	Health, safety and security of individuals associated with the project	 Provide safety training Address potential safety issues in the field
Performance of vendors and sub-recipients	Increased complexity and interdependencies	 Establish PM and SME team responsible for communication and coordination Identify and address potential design and execution issues
Interoperability and security	System integration efforts of multiple vendors and existing utility systems	Develop a documented interoperability and security plan
Changes of federal, state, or local utility regulation	Updates to policies may cause deviation from project objectives	Monitor all applicable regulations.

Cybersecurity & Interoperability

Energy Efficiency & Renewable Energy

- Define Cybersecurity Risks
 - Integrate security controls and perform acceptance and security evaluation testing.
 - Engage operations for security monitoring and incident handling.
 - Establish maintenance cycles for system changes such as credential management and patching.
- Create Interoperability Criteria for Vendor and Device Selection
 - Evaluate each vendor's device for cybersecurity risk and interoperability feasibility.
 - Perform periodic design reviews and security tests as project progresses.
- Standards and Best Practices
 - Identify and include logical and physical security controls in the system requirements specification.