

Sunshine to Petrol: Reimagining Transportation Fuels

Sandia National Laboratories 8 July 2017 Anthony Martino

Sandia National Labora tories is a multimission labora tory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Drivers of Transportation Fuel R&D

The Problem

- U.S. Petroleum Demand is 20.7 mb/d (2007).
- An additional 64 mb/d of petroleum six times the current capacity of Saudi Arabia – will be needed in the U.S. by 2030.
- 1 in 8 casualties in Iraq were protecting fuel convoys

The Solution

- Policy:
 - > The Renewable Fuel Standard (RFS) and RFS2 of 2005 and 2007
- Targets:
 - > 36 bg/yr renewable fuels by 2022
 - > 15 bg/yr of corn ethanol by 2015
 - > 21 bg/yr from second and third generation cellulosic- or algae-based fuels
- Investments:
 - FY2008-FY20011: DOE/EERE/BETO, DOE/SC/OBER) \$1B in Bioenergy Research Centers, Algae Biofuels Consortia, and Industry-Led Biorefineries
 - FY2012: EERE/BETO \$195M (\$270M FY13 request); SC/OBER \$113M
 - > USDA loan guarantee program.

A Diversified Policy and R&D Portfolio in Needed

Potential Solutions

- Natural Gas Reforming (GTL)
- Hybrid, Plug-in Hybrid, Electric Vehicles
- Biofuels
- Solar Fuels $(H_2, H_2 \& CO)$

Technology Options

- Solar Thermochemical
- Solar Electrolysis
- Photoelectrochemical (PEC)
- Photocatalysis
- Artificial Photosynthesis

Solar ThermoChemical Fuels: Sunshine to Petrol (S2P)

Liquid hydrocarbons are the "Gold Standard" for transportation fuels.

S2P: Use the heat of the sun to "energize" CO_2 and H_2O into syngas, a precursor to hydrocarbon fuels.

Sunlight + CO_2 + $H_2O \rightarrow Fuel + O_2$

 $\frac{\text{Fischer-Tropsch}}{\text{nCO} + (2n+1)\text{H}_2 \rightarrow \text{C}_n\text{H}_{2n+2} + n\text{H}_2\text{O}}$

Our Solar Thermochemical Process is Conceptually Simple

 $\frac{1}{\delta} \operatorname{MO}_{x} \xrightarrow{\rightarrow} \frac{1}{\delta} \operatorname{MO}_{(x-\delta)} + \frac{1}{2} \operatorname{O}_{2}$ Fe₃O₄ $\xrightarrow{\rightarrow}$ 3 FeO + $\frac{1}{2} \operatorname{O}_{2}$

 $1/\delta$ MO_(x-δ) + CO₂ → $1/\delta$ MO_x + CO 3 FeO + CO₂ → Fe₃O₄ + CO

R&D focus on:

- Reactor/Engine
 - Maximizing Energy usage (continuous operation, sensible energy recovery i.e. recuperation)
 - > Interfacing Solar with chemistry
 - > Minimal parasitic work input
 - Decoupling steps (products, conditions, rates)
- Catalysts
 - > Thermodynamics
 - Kinetics
 - Durability
- Systems
 - Setting targets, process optimization , economics, life cycle impacts etc.

We envision new domestic industries in engines, catalysts, and fuels.

Sandia has invested nearly \$20M and built an interdisciplinary team.

Principal Investigator – James E. Miller Project Manager – Tony Martino

Engines

- Solar Reactor Rich Diver, Tim Moss, Scott Korey, Nathan Siegel
- <u>Reactive Structures</u> Nathan Siegel, Terry Garino, Nelson Bell, Rich Diver, Brian Ehrhart
- <u>Detailed Reactor Models</u> Roy Hogan, Ken Chen, Spencer Grange, Siri Khalsa, Darryl James (TTU), Luke Mayer (student)

Catalysts

- Reactive Materials Characterization & Development Andrea Ambrosini, Eric Coker, Mark Rodriguez, Lindsey Evans, Stephanie Carroll, Tony Ohlhausen, William Chueh
- <u>Bulk Transport & Surface Reactions</u> Gary Kellogg, Ivan Ermanoski, Taisuke Ohta, Randy Creighton
- <u>Thermodynamics & Reaction Kinetics</u> Mark Allendorf, Tony McDaniel, Chris Wolverton (Northwestern University), Bryce Meredig (student), Heine Hansen (PD), Asegun Henry, Al Weimer (CU), Jon Scheffe (student)

Systems Analysis

 Terry Johnson, Chad Staiger, Christos Maravelias (U-WI), Carlos Henao (student,) Jiyong Kim (PD), Daniel Dedrick

Over 20 conference proceedings, 80 conference presentations, 20 peer-reviewed journal articles, 4 book chapters, and 8 patents

The CR5 is our First Engine Prototype

Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5)

Figure Credit: Popular Science

"Reactorizing a Countercurrent Recuperator"

Continuous flow, Spatial separation of products, Thermal recuperation

S2P uses concentrated solar power focused on a solar furnace.

Petrol This 12-ring test set the standard for heat-tochemical conversion efficiency. SUNSHINE

Sunshine to

Sunshine to **P** Petrol **P**

The Cascading Pressure Reactor Embodies the Packed Bed Reactor Design with Increased Efficiencies

Incrementally pumping O₂ reduces the overall flow volume and velocity

We recently produced 2L of H₂ over 1 hour.

Thermodynamics, kinetics, and stability are technological challenges for materials.

- Redox thermodynamics and kinetics.
 - Critical to reactor design and efficient operation
 - Large, reversible oxygen deficiency (reduction extent)
 - Fast redox rates and matched to solar flux
- Stability and long-term durability of redox active ceramic structures.
 - Cycle life ~ 300,000 cycles (10 year life)
 - heating rates (1000°C/min)
 - Compatibility with materials of construction
- Earth abundant and easy to manufacture.

Miller et. al, Advanced Energy Materials 2013, DOI:10.1002/aenm.201300469

Two-step metal oxide cycle

Sunshine to

Petrol

Predictive simulations (DFT) help design new materials formulations.

- 5,329 cubic and distorted perovskite ABO_3 compounds.
- Initial screening based on:
 - thermodynamic stability
 - $E_{f,O} = 2.5-5.0 \text{ eV}$
 - Small (%) lattice expansion upon O-⁵ defect formation.
 - lattice softening \Rightarrow higher entropy
- Discard improbables.
 - Actinides, rare elements.

A. A. Emery, J. E. Saal, S. Kirklin, V. I. Hegde, C. Wolverton, Chemistry of Materials. 28, 5621–5634 (2016).

14

CeVO3

LaVO3

Characterization helps design new materials formulations.

16 January 2012

Sunshine to

Solar Resources Analysis Shows the Promise of Scale and Requirement for High Efficiency Target

- U.S. Petroleum Demand is 20.7 mb/d (2007)
- 12.5% lifecycle efficiency could produce 16.6 mb/d (80% of total U.S. demand)
- NM alone could produce **23%** of U.S. demand
- 12.5% of available land (17.4 × 10⁹ m²) could provide 10% of U.S. demand

Filters applied (Resource analysis by NREL): Over-filtered

- Sites > 6.75 kwh/m²/day
- Exclude environmentally sensitive lands, major urban areas, etc.
- Remove land with slope > 1%.
- Assume 25% packing density
- Only contiguous areas > 10 km² (675 MW_{primary}) 10 km² = 10^7 m^2 = 3.86 mi²

	Land Area	Solar Capacity	Fuel Cap	Fuel Capacity	
State	(10 ⁹ m ²)	(TW)	(GW)	(mb/d)	
AZ	49.9	3.37	421	5.9	
CA	17.7	1.20	150	2.1	
СО	5.5	0.37	46	0.7	
NV	14.5	0.98	122	1.7	
NM	39.3	2.65	331	4.7	
ТХ	3.0	0.20	25	0.4	
UT	9.2	0.62	78	1.1	
Total	139.2	9.39	1,174	16.6	

139 billion m² is 1.5% of total U.S. land

Numerous Large CO₂ Sources Exist

Substantial resources can be tapped. Infrastructure exists for CO₂ transport.

- Hundreds of large industrial CO₂ emissions sources exist in the United States in areas of high solar insolation.
 - 4-Corners Power
 Plant: 15.6 Mt/y and
 San Juan 13.4 Mt/y
 - At 81% utilization these two plants can supply fuel plants up to 9.8 GW (139 kb/d)
 - ~25 plants of comparable size to 4-Corners could supply US CO₂ for 10% of U.S. demand.

Sunshine to We Investigated a Number of Pathways Petrol and Products including MeOH and FT. **SUNSHINI** Mixed pathway to Fischer-Tropsch (FT) products **Transport** Gasoline **CO**₂ capture CO₂ separation CO_{2}/CO CO CO2 **Flue gas** Dish & FT Diesel system 100 miles **Solar engine Synthesis** H_2O Wax H₂ Dish-CR5 array CO₂ separation system **FT reaction system** $\overline{CO_2}$ H₂O makeup recycle Gasoline CO_2/CO mix CO_2 **Diesel** Wax H₂O H_2/CO mix H_2 H₂O recvcl H₂O recycle#2

- Feed
- CO₂: 352 kmol/hr
- $H_20: 395 \text{ kmol/hr}$
- Product

Gasoline (C7)/Diesel (C14)/Wax (C25): 24/10/1 kmol/hr (333 kmol C/hr)

Economic Evaluation: Minimum Selling Price

16 January 2012

Economic Evaluation: Sensitivity

Analysis

Mixed pathway to MeOH

Technical Summary

- Efficiency is key for cost and scalability
 - Sunlight is the high cost feedstock (capital to capture)
 - Adjacency to other technologies (e.g. solar electric, solar reforming) offers benefits
- High utilization is essential to achieving high efficiency
 - Recuperation, reduction extent, kinetics
 - Need for new materials with optimized thermodynamics, transport properties, structures, physical properties, and thermally efficient reactors

• Three aspects to advancing materials

- Improved compositions (modification and discovery)
- Structuring materials
- Integrating materials and reactor design
- Production and testing of Gen1 CR5 completed; Gen 2 packed bed reactor tested
 - Efficiency > 0.8%, Scales to > 1.5 %
 - Full-days of continuous on-sun testing at powers up to 9 kW.
 - Applying lessons to Gen2 designs and Materials

Thank You For Your Attention

Efficiency \rightarrow **Costs: Collector Area**

Cost Breakdown For \$5/GGE; S2P 12.5% LCE

- Costs for S2P are in the ballpark of viability
- Learning curve will reduce the most expensive contributions
- Very sensitive to the cost of capital recovery

