

Sunshine to Petrol: Reimagining Transportation Fuels

Sandia National Laboratories 8 July 2017 Anthony Martino

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Drivers of Transportation Fuel R&D

The Problem

- **U.S. Petroleum Demand is 20.7 mb/d (2007).**
- **An additional 64 mb/d of petroleum – six times the current capacity of Saudi Arabia – will be needed in the U.S. by 2030.**
- **1 in 8 casualties in Iraq were protecting fuel convoys**

The Solution

- **Policy:**
	- **The Renewable Fuel Standard (RFS) and RFS2 of 2005 and 2007**
- **Targets:**
	- **36 bg/yr renewable fuels by 2022**
	- **15 bg/yr of corn ethanol by 2015**
	- **21 bg/yr from second and third generation cellulosic- or algae-based fuels**
- **Investments:**
	- **FY2008-FY20011: DOE/EERE/BETO, DOE/SC/OBER) \$1B in Bioenergy Research Centers, Algae Biofuels Consortia, and Industry-Led Biorefineries**
	- **FY2012: EERE/BETO \$195M (\$270M FY13 request); SC/OBER \$113M**
	- **USDA loan guarantee program.**

A Diversified Policy and R&D Portfolio in Needed

Potential Solutions

- **Natural Gas Reforming (GTL)**
- **Hybrid, Plug-in Hybrid, Electric Vehicles**
- **Biofuels**
- **Solar Fuels (H² , H² & CO)**

Technology Options

- **Solar Thermochemical**
- **Solar Electrolysis**
- **Photoelectrochemical (PEC)**
- **Photocatalysis**
- **Artificial Photosynthesis**

Solar ThermoChemical Fuels: Sunshine to Petrol (S2P)

Liquid hydrocarbons are the "Gold Standard" for transportation fuels.

S2P: Use the heat of the sun to "energize" CO_2 and H_2O into syngas, a precursor to hydrocarbon fuels.

Sunlight + CO_2 + H₂O \rightarrow Fuel + O₂

 H_2O + energy \rightarrow H₂ + ½ O₂ $CO₂$ + energy \rightarrow CO + $\frac{1}{2}$ O₂ H₂O, CO₂ Splitting

 $nCO + (2n+1)H_2 \rightarrow C_nH_{2n+2} + nH_2O$ Fischer-Tropsch

Our Solar Thermochemical Process is Conceptually Simple

5

 $1/\delta$ MO_x \rightarrow 1/ δ MO_(x- δ) + $\frac{1}{2}$ O₂ $Fe₃O₄$ \rightarrow 3 FeO + ½ O₂

 $1/\delta$ MO_(x- δ) + CO₂ \rightarrow 1/ δ MO_x + CO $3 \text{ FeO} + \text{CO}_2 \rightarrow \text{Fe}_3\text{O}_4 + \text{CO}$

R&D focus on:

- **Reactor/Engine**
	- **Maximizing Energy usage (continuous operation, sensible energy recovery i.e. recuperation)**
	- **Interfacing Solar with chemistry**
	- **Minimal parasitic work input**
	- **Decoupling steps (products, conditions, rates)**
- **Catalysts**
	- **Thermodynamics**
	- **Kinetics**
	- **Durability**
- **Systems**
	- **Setting targets, process optimization , economics, life cycle impacts etc.**

We envision new domestic industries in engines, catalysts, and fuels.

Sandia has invested nearly \$20M and built an interdisciplinary team.

Principal Investigator – James E. Miller Project Manager – Tony Martino

Engines

- **Solar Reactor - Rich Diver, Tim Moss, Scott Korey, Nathan Siegel**
- **Reactive Structures - Nathan Siegel, Terry Garino, Nelson Bell, Rich Diver, Brian Ehrhart**
- **Detailed Reactor Models - Roy Hogan, Ken Chen, Spencer Grange, Siri Khalsa, Darryl James (TTU), Luke Mayer (student)**

Catalysts

- **Reactive Materials Characterization & Development - Andrea Ambrosini, Eric Coker, Mark Rodriguez, Lindsey Evans, Stephanie Carroll, Tony Ohlhausen, William Chueh**
- **Bulk Transport & Surface Reactions - Gary Kellogg, Ivan Ermanoski, Taisuke Ohta, Randy Creighton**
- **Thermodynamics & Reaction Kinetics - Mark Allendorf, Tony McDaniel, Chris Wolverton (Northwestern University), Bryce Meredig (student), Heine Hansen (PD), Asegun Henry, Al Weimer (CU), Jon Scheffe (student)**

Systems Analysis

 Terry Johnson, Chad Staiger, Christos Maravelias (U-WI), Carlos Henao (student,) Jiyong Kim (PD), Daniel Dedrick

Over 20 conference proceedings, 80 conference presentations, 20 peer-reviewed journal articles, 4 book chapters, and 8 patents

The CR5 is our First Engine Prototype

7

Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5)

Figure Credit: Popular Science

"Reactorizing a Countercurrent Recuperator"

Continuous flow, Spatial separation of products, Thermal recuperation

S2P uses concentrated solar power focused on a solar furnace.

Petrol This 12-ring test set the standard for heat-to-C4 chemical conversion efficiency.SUNSHINE

Sunshine to

 \mathbf{q}

The Cascading Pressure Reactor Embodies the Packed Bed Reactor Design with Increased Efficiencies

Incrementally pumping O_2 reduces the overall flow volume and velocity

16 January 2012

We recently produced 2L of H₂ over **1 hour.**

Thermodynamics, kinetics, and stability are technological challenges for materials.

- Redox thermodynamics and kinetics.
	- Critical to reactor design and efficient operation
	- Large, reversible oxygen deficiency (reduction extent)
	- Fast redox rates and matched to solar flux
- Stability and long-term durability of redox active ceramic structures.
	- Cycle life \sim 300,000 cycles (10 year life)
		- heating rates $(1000^{\circ}C/min)$
	- Compatibility with materials of construction
- Earth abundant and easy to manufacture.

Miller et. al, *Advanced Energy Materials* **2013**, DOI:10.1002/aenm.201300469

Two-step metal oxide cycle

Sunshine to

Petrol

Predictive simulations (DFT) help design new materials formulations.

- 5,329 cubic and distorted perovskite ABO $_3$ compounds.
- Initial screening based on:
	- thermodynamic stability
	- $E_{f,0} = 2.5 5.0 \text{ eV}$
	- Small (%) lattice expansion upon Odefect formation.
		- $-$ lattice softening \Rightarrow higher entropy
- Discard improbables.
	- Actinides, rare elements.

A. A. Emery, J. E. Saal, S. Kirklin, V. I. Hegde, C. Wolverton, *Chemistry of Materials*. **28**, 5621–5634 (2016).

LaVO3

Characterization helps design new materials formulations.

16 January 2012

Sunshine to

5

Solar Resources Analysis Shows the Promise of Scale and Requirement for High Efficiency Target

- U.S. Petroleum Demand is 20.7 mb/d (2007)
- **12.5%** lifecycle efficiency could produce 16.6 mb/d (**80%** of total U.S. demand)
- NM alone could produce **23%** of U.S. demand
- **12.5%** of available land (17.4) × 10⁹ m²) could provide **10%** of U.S. demand

- Sites > 6.75 kwh/m²/day
- Exclude environmentally sensitive lands, major urban areas, etc.
- Remove land with slope > 1%.
- Assume 25% packing density
- Only contiguous areas > 10 km² (675 MW_{primary}) 10 km² = 10⁷ m² = 3.86 mi²

139 billion m² is 1.5% of total U.S. land

Numerous Large CO² Sources Exist

Substantial resources can be tapped. Infrastructure exists for $CO₂$ transport.

- Hundreds of large industrial $CO₂$ emissions sources exist in the United States in areas of high solar insolation.
	- 4-Corners Power Plant: 15.6 Mt/y and San Juan 13.4 Mt/y
	- At 81% utilization these two plants can supply fuel plants up to 9.8 GW (139 kb/d)
	- ~**25 plants** of comparable size to 4- Corners could supply US CO₂ for **10%** of U.S. demand.

- CO_2 : 352 kmol/hr H2O: 395 kmol/hr
	- Product

Gasoline (C7)/Diesel (C14)/Wax (C25): 24/10/1 kmol/hr (333 kmol C/hr)

Economic Evaluation: Minimum Selling

16 January 2012

Economic Evaluation: Sensitivity

Analysis

Mixed pathway to MeOH

Technical Summary

- **Efficiency is key for cost and scalability**
	- **Sunlight is the high cost feedstock (capital to capture)**
	- **Adjacency to other technologies (e.g. solar electric, solar reforming) offers benefits**
- **High utilization is essential to achieving high efficiency**
	- **Recuperation, reduction extent, kinetics**
	- **Need for new materials with optimized thermodynamics, transport properties, structures, physical properties, and thermally efficient reactors**

• **Three aspects to advancing materials**

- **Improved compositions (modification and discovery)**
- **Structuring materials**
- **Integrating materials and reactor design**
- **Production and testing of Gen1 CR5 completed; Gen 2 packed bed reactor tested**
	- **Efficiency > 0.8%, Scales to > 1.5 %**
	- **Full-days of continuous on-sun testing at powers up to 9 kW.**
	- **Applying lessons to Gen2 designs and Materials**

Thank You For Your Attention

22

16 January 2012

Efficiency → Costs: Collector Area

16 JANUARY 2012 SIMBAD 201
16 JANUARY 2012 SIMBAD 201

Cost Breakdown For \$5/GGE; S2P 12.5% LCE

- **Costs for S2P are in the ballpark of viability**
- **Learning curve will reduce the most expensive contributions**
- **Very sensitive to the cost of capital recovery**

