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e Goals of the project
e Challenges due to high penetration of PV

e Major achievements and challenges

e Solar Disaggregation
e Switch Configuration Detection
* Machine Learning-based Power Flow



VADER - Goals
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VADER Infrastructure
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Challenges
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Overall Challenges with PV adoption:

e More active devices that are not modeled or difficult to
model.

e Utility unaware of small deployments that add up to a
lot.

e Bi-directional power flow and over voltages.
VADER Challenges:
e Interoperability among models (GridLab-D, CYMEDist,
Opal-RT)
e Messy data
e Developing schemas for data sets



VADER Accomplishments

e [nitial set of analytics developed and tested with IEEE-123 Bus Model
(GridLab-D integration)
« Machine Learning-based Power Flow
« Switch Detection
« Solar Disaggregation
* Forecasting
« Topology detection
e Platform demonstration with historical data

e Held first VADER Lab in March 2017
e Started applying SCE’s data and getting results

« Solar Disaggregation
« Switch Detection
e Expanded machine learning- based Power Flow to three-phase systems.

e Developed EV flexibility analytics.



Platform built and initial set of analytics tested
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VADER Learning Lab

Two VADER Learning Labs hosted:

- End of March @ SLAC: industry
participation
- End of May @ CEC: CEC staff
participation
Goals: Critical review and increase
awareness to drive adoption

Agenda:
e Overview of VADER
e Intro to infrastructure and Ul

e ML-based power flow and Solar
disaggregation tutorials followed by tasks for
participants

e Wrap up and feedback




Solar Disaggregation
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Results (Training vs. Real-time)
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SCE Radial Configuration Detection

Overview:

Detect Switch Status

Sensing: AMI, Line Sensing, Substation

Traditional Approach:

General State Estimation; Voltage,

Current -
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SCE Radial Configuration Detection
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Theory Predicts:
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Current Work:

Extending Algorithms for lossy/3-phase networks.
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Machine Learning-based Power Flow

Availability of topoloqy line parameters

e Traditional state estimation method: require line connectivity and parameters
information

e ML method: no need for line Information

Ability to handle missing measurements

e Traditional Method: No. It needs the whole system to be observable.

e ML Method: Yes. It only builds correlation between available data at available time
slots.

Ability to conduct voltage forecasting / power flow

e Traditional Method: No. It is static state estimation.

e ML Method: Yes. It only builds correlation between voltages and power, forecast
power, and recover voltage based on the relationship.



Machine Learning Based Power Flow -
How does it work and how does it compare
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Yu, Jiafan, Yang Weng, and Ram Rajagopal. "Mapping Rule Estimation for Power Flow Analysis in Distribution Grids." arXiv preprint arXiv:1702.07948(2017).



VADER Infrastructure - growing new work
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Problem formulation

Day-ahead training problem (learning the model):
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Problem formulation
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Real-time estimation problem:
Input Outputs
Data from load aggregation point (substation) Solar at each meter
Solar from sparse # of sensors
Outdoor Temp.
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