

GRID MODERNIZATION INITIATIVE

HELICS

1.4.15 - Development of Integrated Transmission, Distribution and Communication (TDC) Models

HENRY HUANG

July 21, 2017

Presented at the SunShot SuNLaMP Workshop, ANL

GMLC 1.4.15 TDC Models: Extensive industry engagement

- ► TRC webinar
- TRC in-person meeting

Name	Organization
Jun Wen	SCE
Raul Perez-Guerrero	SCE
Babak Enayati	National Grid
Jianzhong Tong	PJM
Slaven Kincic	Peak RC
Mike Zhou	InterPSS Systems
Ernie Page	The MITRE Corporation
Bernie Zeigler	U. Arizona
Calvin Zhang	Nexant
Anjan Bose	WSU
Aidan Tuohy	EPRI

Name	Organization
Jens Boemer	EPRI
Craig Miller	NRECA
Cynthia Hsu	NRECA
David Pinney	NRECA
Tim Heidel	NRECA
Devin Van Zandt	GE
John Gibson	Avista
Hung-Ming Chou	Dominion Power
Avi Gopstein	NIST
Dave Anderson	WSU

GMLC 1.4.15 TDC Models: Project Summary

Project Description This project aims to enable large-scale TDC interdependency studies through a flexible and scalable, open-source co-simulation platform for the following industry drivers

Value Proposition

- There is currently a gap in simulation and modeling technology that inhibits integrated planning across multiple domains
- Left to it's own devices, the grid community is unlikely to develop capabilities to overcome planning stovepipes (in near term)
- The DOE plays a unique role in initiating this effort and creating foundational tools that support both research and industry

- Provide foundational capabilities for grid planning, operation, and control
- Engage and educate grid developers on the value of multi-domain planning

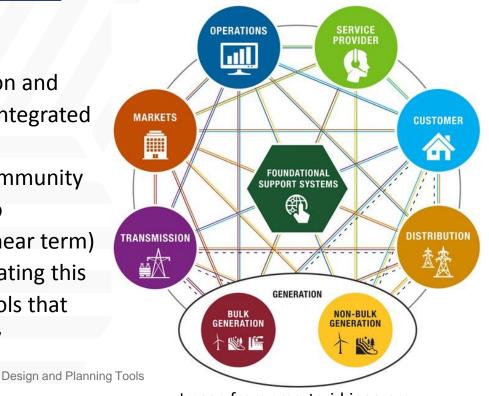
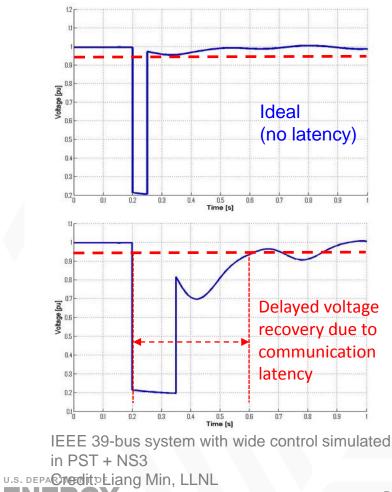
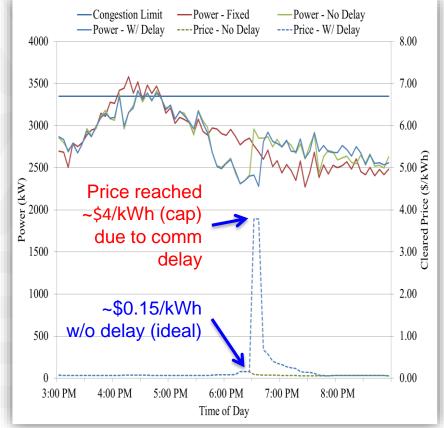



Image from smartgrid.ieee.org


Interdependency resulting in reliability and efficiency issues

Delayed Voltage Recovery in Wide Area

Price Spikes in Demand Response (T+D+C)

IEEE-13 node system with 900 residential loads simulated in GridLAB-D[™] + NS3

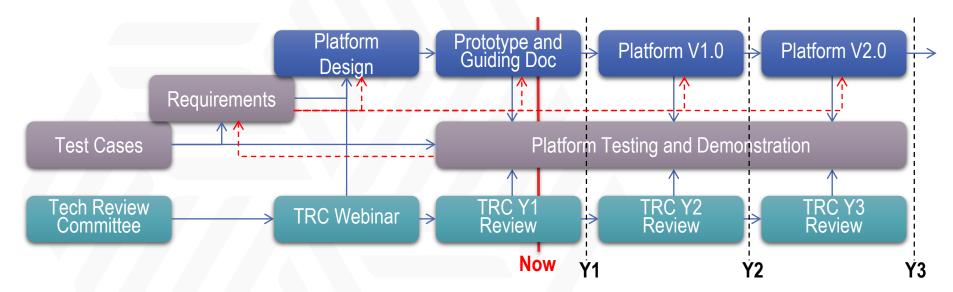
Credit: Jason Fuller, PNNL

Design and Planning Tools

HELICS supports Grid Modernization **Multi-Year Program Plan**

A high-fidelity TDC integrated simulation capability will help address MYPP national outcomes:

- to design, with confidence, the future grid to minimize outages and outage costs;
- operate the grid with a leaner reserve margin and still maintain reliability through holistic analysis; and
- increase penetration of DERs by informing decision-makers with quantified impacts on the system reliability and economics.



Use-case-driven development of HELICS

Three tracks (use case driven):

TEST CASES, PLATFORM DESIGN AND DEVELOPMENT, OUTREACH

Development plan targets open-source release of the co-simulation platform

HELICS – Hierarchical Engine for Large-scale Infrastructure Co-Simulation

HELICS use cases and features

No

1

Support a variety of simulation types:

- Discrete Event
- Time Series
- QSTS
- Dynamics
- Transients

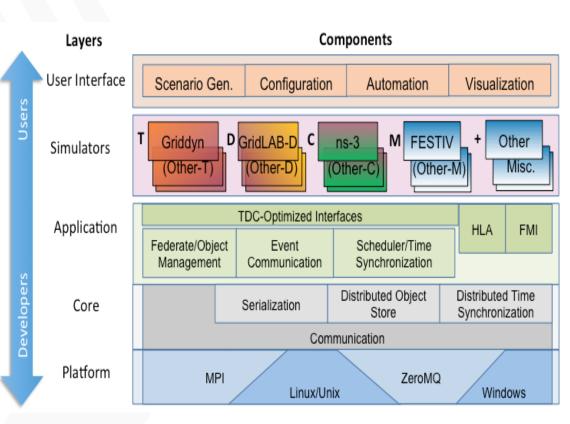
Evaluate systems of unprecedented scale:

- 2-100,000+ Federates
- HPC, including cloud
- But also workstations and laptops

Title	Description
Impacts of DER's	The test case will analyze a combined T&D test system with and without
on Bulk Systems	advanced distributed systems with high penetrations of distributed solar
Reliability	PV. Studying the impact on reliability metrics such as the NERC Control
	Performance Standards 1 and 2 as well as other main metrics can quantify
	the impacts of advanced distribution systems.

	Domain			Simulation			Comm		
	Transmission	Distribution	Communication	Market	Steady State	Dynamic	Transient	Latency	Packets
DER's on Bulk Systems Reliability	Х	Х			Х				
Load Modeling under high penetration of DERs		Х				Х			
Wide Area Voltage Stability Support Using DERs		Х	Х		Х			Х	
Voltage and Frequency Ride-Through Settings for Smart Inverters	х	Х	Х			Х			
Real-time Co-simulation of Power Systems and Communication Networks for Transient Assessment	х	х	х				х	х	
Communications Architecture Evaluation for High-Pen Solar	Х	Х	Х		Х				х
New Control Paradigm – Centralized vs Distributed to Prevent Voltage Stability Collapse		х	х			х		х	
Wide Area Monitoring, Protection, and Control (WAMPAC)			х			х		х	х
Impacts of Distributed Energy Resources on Wholesale Prices		Х		Х	Х				
Mitigating T/D Interface Congestion Through Demand Side Management		х		х	х			х	
Regional Coordinated Electric Vehicles Charging		Х		Х	Х			Х	
Real-time Coordination of Large Scale Solar PV and Energy Storage		Х			Х			Х	
Design and Planning Tools					7/20	6/201	7	7	

HELICS modular design



Layered and modular architecture to support:

- Laboratory, open-source, and commercial tools
- Interchangeable time synchronization algorithms (depending on use case)
- Reiteration, when necessary

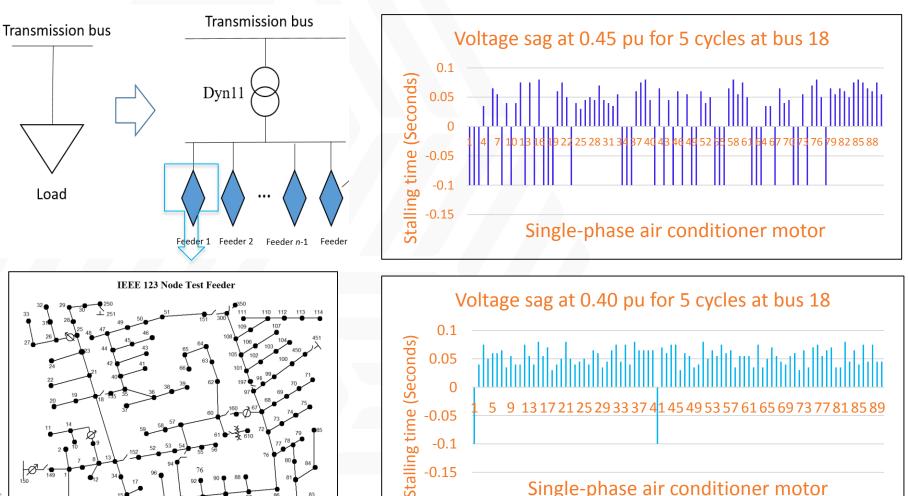
Support standardized interfaces:

- HLA, FMI, etc.
- Tuned APIs for highly used tools (e.g., GridLAB-D, ns-3)

U.S. DEPARTMENT OF

- Developed 12 use cases, with broad coverage
- Released v0.1 of HELICS to the open source in May 2017, including Guiding Document and example use cases
 - Currently securing licensing and copyright agreements
- Held TRC Meeting in May 2017 in Richland, WA
- Add additional simulators as identified by working with other GMLC projects and TRC members
- Implement HPC Platform Layer (MPI-based) to address large numbers of federates
- Develop use cases to demonstrate value and address limits of tool
- Develop (and release) tools to increase usability of tool
- Release subsequent versions to open source (Ver 1, 12/1/2017)

T+D detailed simulation for aggregated load protection modeling



Credit: Yu Zhang, PNNL

454953

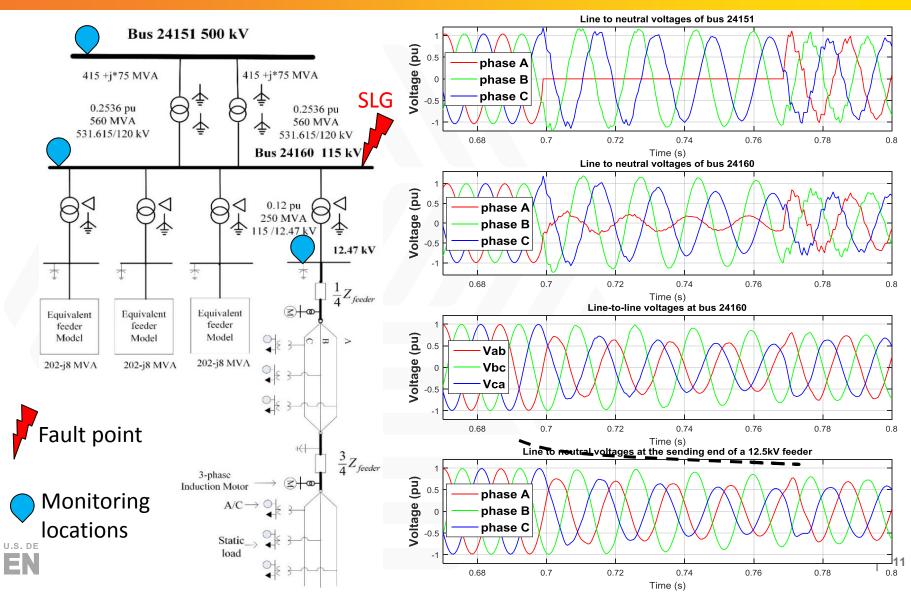
Single-phase air conditioner motor

IEEE 39 bus system + IEEE 123 bus feeders

0

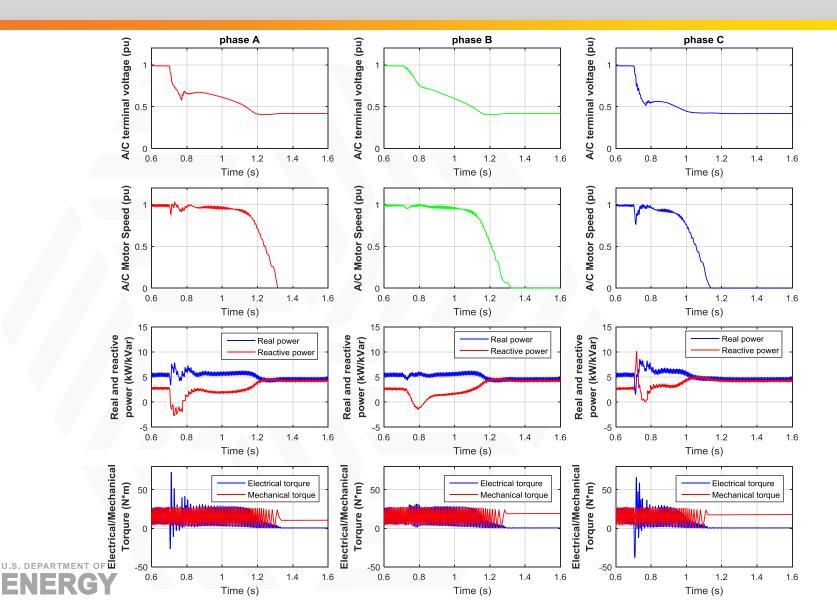
-0.05

-0.1

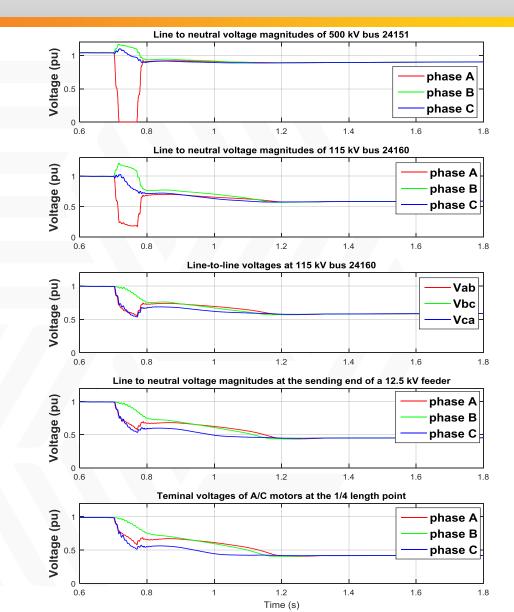

-0.15

PSLF (T) + PSCAD (D) for FIDVR events

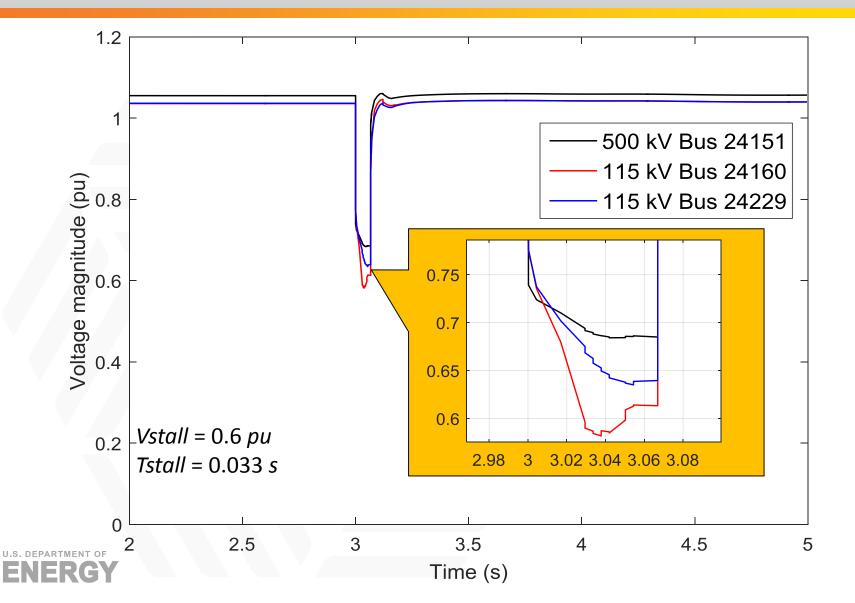
FIDVR = Fault Induced Delayed Voltage Recovery


Credit: Qiuhua Huang, PNNL

U.S. Department of Energy


Motor stalling properly simulated

Slow voltage recovery resulted from motor stalling



PSLF simulation results using CMPLDW

14