CyDER Overview

A Cyber Physical Co-simulation Platform for Distributed Energy

Resources (CyDER) in Smart Grids

Lawrence Berkeley National Laboratory
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Problems

— Variability in penetration of PV and EVs at distribution, customers, and
transmission levels

— Limited accuracy, lack of measured data to calibrate and validate models

— Lack of interconnection between transmission and distribution systems
(T&D)

Targets: to develop a planning tool that
— are modular and scalable
— enable the co-simulation of T&D systems

— incorporate novel control strategies such as EV charging control and
demand response

— consider the stochastic nature of PV and DER

— streamline and substantially decrease the interconnection PV approval time
and costs for new PV installations
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" Prototype a cyber-physical co-simulation platform for
integration and analysis of high PV penetration that is

— Highly modular

— Scalable

— Interoperable with commercial utility distribution
planning tools

— Integrates transmission and distribution (T&D) systems
and their components

" Project will
— Enable any level of high PV penetration

— Handle large data sets
— Decrease interconnection time and streamline processes
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An advanced discrete-event co-simulation platform

— Integrating the Functional Mock-up Interface (FMI) standard
— For T&D co-simulation tool

QSTS (Quasi-Static Time Series) Co-simulation

— Enables system analysis over a time horizon rather than individual
snapshots of time
—> especially useful for time-varying components such as EVs and PV

Real-time Data Acquisition for Predictive Analytics

— PV forecasts from weather and inverter data, EV charging forecasts from
mobility data, feeder model validation with microPMU data

PV applications manager
— Expedite PV integration analysis and streamline utility/operator processes
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CyDER Concept
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From Model to an FMU

Engine
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V

dt = f(x,u,t)
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CyDER System Architecture

Input Iayer Scenario Data Real-time Data PV Forecasting EV Forecasting

: PyFMI | <

OPAL-RT
Simulation FMU CYMDIST Spdb
FMU FMU
layer Smart
Inverter FMU
Output layer / l I \
: PV Application Planning Operations

App layer HIL Testing Manager Application Application
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CyDER for short-term planning for Operations
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CyDER for Long-Term Planning
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CyDER PV Applications Manager

* Reduce PV interconnection approval time and cost:

— <I hour for residential, <5 days for commercial and utility
— <$100 for residential, <$1,000 for commercial and utility

Applicant enters data
for PV Interconnection

e
[——
Location, PV Data
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Achievements & Challenges

e Achievements

— Development and integration of individual
modules for CyDER in FMI standard

— Demonstration of use cases

— Predictive analytics module for PV generation and
EV charging

* Challenges (improvements to make)
— Automated generation of FMUs
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Demonstrations

%ﬂn égﬂrusntbg-gy

13



Use cases of CyDER

* Use case |: planning — housing development project with PV (> 500
kW) and EVs

Request by distributed PV aggregator
Location determined (not optional)

Possible market participation (CAISO) — for BP2

* Can participate in both energy and ancillary markets as a DERP (DER
Provider)

= Use case 2: operation — power quality issue with PV inverter

Frequent inverter connection issues with high voltage (>1.05)
Switched cap bank and LTC present
More PV installation anticipated (> 500 kW)

Diagnose high voltage issues, develop resolution plan with existing
control and/or new mitigation strategies

Stochastic QSTS planned for BP2

nshot
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Demonstrations

= Goal

— To test successful interconnection of GridDyn and CYMDIST
FMUs for QSTS simulations for multiple feeders and buses

= Distribution system input (load) drives the co-simulation at
each time step

— Load value changes by time step at the feeder
— PV and EV scenarios create different load profiles

/ N\
| Initial Conditions |

| Data | © Snapshot @ T, |
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Demonstration: Grid Model

* Transmission (GridDyn): IEEE 14-bus test system

— Feeders modeled at Bus || (3.5 MWV, 1.8 Mvar load, 13.8 kV)
and Bus 10

= Distribution (CYMDIST)

— Feeder A at Bus | |
* 42 kV,~1.6 MW, 0.6 Mvar load
* |61 nodes, ~2.2 miles, overhead+underground lines
* 73 spot loads from which 40 are residential loads
* |6 sections already installed with PV
* 2 capacitor banks, one LTC for voltage regulation

— Feeder B at Bus 10
e 1247 kV,~3.2 MW, |.8 Mvar load

* 1097 nodes, 588 spot loads, ~10.7 miles, overhead+underground lines
* 51 sections with PV installed
* 5 capacitor banks, one voltage regulator
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Demonstration: Grid Model

" Transmission system
: |EEE 14-Bus Test System

http://icseg.iti.illinois.edu/ieee-14-bus-system/
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Demonstration: Scenarios

= Scenarios

|. Base case scenario
: simple CYMDIST — GridDyn coupling over 2.5 minutes
in 5-second interval

2. Base case + 100 EVs on Feeder A, 200 EVs on Feeder B
:over a day in 5-minute interval

3. Base case + 100 houses on Feeder A,
200 houses on Feeder B
: each house with 3 kW load and 4 kW PV
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Demonstration: Scenario |

= Base case (2.5 minutes, 5 seconds interval)
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Load and PV output change at every time step based
on the profile
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Demonstration: Scenario 2

= Electric vehicles penetration on the feeder
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Demonstration: Scenario 3

" Base case + housing development scenario

1.4 Housing development

12 projects: 100 houses and
= 1.0 .
& 200 houses with each a
5 0.8 +
= 0.6 3kW power demand and a
=
© 04 —— load profile 4kW PV.

0.2 pv profile

0.0

0.0 0.5 1.0 15 2.0 25

Time (minutes)

Load and PV output changes at every time
step based on the profile

Feeder A
Feeder B
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Demonstration: Case | Results

Base case (2.5 minutes, 5 seconds interval)
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Demonstration: Case 2 Results

Electric vehicles
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Demonstration: Case 3 Results

Housing development
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CyDER system architecture
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CyDER System Architecture

"\
. Front end “
" Front end —WVeb interface
— Enables users to create projects
— A project contains a trans. grid + Web interface
multiple dist. grids with individual
scenarios (PV, EVs, ...) my project

From 18:00:00 to 20:00:00, 1 minute interval

Distribution model 1| | Distribution model 2| -

" Back end — Execution engine esonowses || io0eve
— Projects translated into configuration
files for PyFMI A
— Results of simulation reported back to Olerbuton FUD vastr | Resuts rom e
Web Interface configuration files co-simuiatio
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Time
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CyDER System Architecture

User inputs
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FMI Standard

Engine Engine Control Transmission Transmission
Control
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Functional Mock-up

| |

Cosimulation of the behavioral models and the embedded controller software

Developed to encapsulate and link models and simulators
Initially a 28 million € ITEA2 project with 29 partners.

Standardizes APl and encapsulation of models and simulators.

First version published in 2010. Second version published in 2014.

Initially supported by 35 tools, now supported by 90 tools.

partment of Energy
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From Model to an FMU

Engine

dx

V

dt = f(x,u,t)
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CYMDIST and GridDyn Coupling

= PyFMI as Master Algorithm

— Python based and open source
— AT & D models in same API

— PyFMI can easily integrate new models

PyFMI
(Master Algorithm)

voltages
GridDyn CYMDIST
(FMU) currents (FMU)




CyDER System Architecture

Input Iayer Scenario Data Real-time Data PV Forecasting EV Forecasting

: PyFMI | <

OPAL-RT
Simulation FMU CYMDIST Spdb
FMU FMU
layer Smart
Inverter FMU
Output layer / l I \
: PV Application Planning Operations

App layer HIL Testing Manager Application Application
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CyDER System Architecture

* Additional documentation (CYMDISTToFMU,
Master Algorithm, Forecast module) are
available at

https://github.com/LBNL-ETA/CyDER
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