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The photoexcited change in valence and conduction carrier density modifies
the screening, broadening, and possible XUV transitions in the excited state absorption 

Excitation at 800 nm is followed by inter-valley ∆−∆’ scattering and thermalization, tracked by the measured phonons. The carrier distribution relaxes from the L to ∆ valley after 500 nm excitation. 
For 266 nm excitation, only slow filling of ∆ is measured as Γ is dipole forbidden.

The phonon population from inter-valley scattering has a distinct rise time at 
each excitation wavelength due to the possible scattering pathways.

The phonon population from intra-valley and phonon-phonon scattering is
less dependent on excitation wavelength since the process is more isotropic 

Photoexcitation results in charge transfer from the Si, through the insulating TiO2 layer, and into the Ni metal. 

The charge accumulated can be tracked by the energy of the metal edge

Excitation at 500 nm is followed by inter-valley L-L’ and L-X scattering, reflected in the initial phonon distribution.

Excitation at 266 nm is followed by inter-valley Γ-X scattering followed by a long thermalization period due to 
excess pump energy, as seen by comparing the amplitude of the initial to final phonon modes to 800 nm excitation

Polarization selection rules lead to degenerate valleys not being filled equally with carriers.
The inter-valley scattering phonons can then lead to an anisotropic deformation of the lattice.

Following momentum-thermalization through inter-valley scattering, carriers thermalize energetically
by intra-valley scattering. The more random distribution of excited phonons expands the lattice.

On long time scales recombination decreases the excited state absorption. Phonon-phonon scattering
also converts the high energy phonon modes into a thermal expansion of the lattice.
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The photoexcited electron population in Si decreases
when the TiO2/Ni are added, correlated with the
photoexcited charge transfer measured in the Ni.

The charge transport and phonon populations 
can be tracked for the semiconductor (Si), 
metal (Ni), and insulator (TiO2) of the metal-
insulator-semiconductor junction.  
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(a) High harmonic generation occurs 
by ionization and acceleration of 
electrons in the electric field of a laser 
pulse. (b) The gas determines the 
harmonic range. (c) Transient extreme 
ultraviolet (XUV) setup.
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