PHOTOEXCITED CARRIERS, PHONONS, and their SCATTERING 800 nm Excitation Measured by Transient Extreme Ultraviolet Spectroscopy Scott K. Cushing^{1,3}, Brett M. Marsh¹, Mihai E. Vaida¹, Stephen R. Leone^{1,2,3} Department of Chemistry, ²Department of Physics, University of California Berkeley; ³Chemical Sciences Division, Lawrence Berkeley National Laboratory # **Transient XUV Spectroscopy** (a) High harmonic generation occurs electrons in the electric field of a laser pulse. (b) The gas determines the harmonic range. (c) Transient extreme ultraviolet (XUV) setup. #### Why X-Rays? **Electronic Sensitivity Excited State Absorption** Screening Calculated by BSE (Quantum Espresso) Core-level transitions measure carriers excited in the valence and conduction band **Structural Sensitivity** The transient absorption following 800 nm excitation contains a mixture of carrier and phonon contributions The core-hole also imparts structural information on the absorption ## **Separating Carriers and Phonons In Transient XUV** #### Valley-Specific Electron-Phonon Scattering Pathways in Si(100) excess pump energy, as seen by comparing the amplitude of the initial to final phonon modes to 800 nm excitation ## Charge and Heat Transfer in a Metal-Insulator-Semiconductor Junction #### Other Materials: 1. Ultrafast Charge Trapping by Polarons in Fe₂O₃ S.K. Cushing, et. al Nature Materials, Just Accepted 2017 2. Electrons and holes in Ge and Si:Ge M. Zurch Nature Communications 8 (2017), 15734; M. Zurch Structural Dynamics, 4 (2017), 044029. ## Funding