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Project Objectives
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Coordinated Real-time Sub-
Transmission Volt-Var Control Tool
(CReST-VCT)

Optimal Future Sub-Transmission
Volt-Var Planning Tool (OFuST-VPT)
for short- and long-term planning.

Key Milestones & Deliverables

Year |: | Stand-alone prototype of

CReST-VCT

Year 2: | Simulation demonstration of
CReST-VCT and prototype of

OFuST-VPT

Year 3: | Field demonstration of
CReST-VCT, industry outreach,
final report and the codes for

the two tools




Scalability of the solution: Co-optimization of

transmission and distribution Voltage
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Demonstrated CReST-VCT on IEEE 118-bus/ IEEE 123 node test

systems

Completed advanced synchronous generator capable PV inverter
control models and integrated into CReST-VCT

Developed and tested via simulation load-side control options for full
IEEE 123-node system and two Duke Energy distribution feeders in
OpenDSS

Wrote white paper summarizing characteristics of reactive power
compensation devices to be modeled in CReST-VCT

Finalized prototype of distribution system model reduction tool
Seven (7) peer-reviewed conference papers accepted
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CReST-VCT Implementation CReSWVCT user

Interface through
Python

AC OPF for
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Simulation Scenario - 3 IEEE |23 feeders
of the IEEE |18 bus system
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Real and Reactive Power (transmission vs.
distribution)
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PV Reactive Power (aggregated at substation vs.
output of distributed units)
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PV Reactive Power at Different Nodes of the Feeder
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Voltage (p-u.)

Voltage Profiles (substation vs. distribution nodes)

1.06

1.04 -

1.02 -

PonlatV \_/\ -y \I"\\.

=
©
©

Y

=

©

o
I

0.94 -

x 1"‘\'7

X *\o" v
N

1r.:\

Mgt [
"lﬂ |‘1

A

—substation
---=node 3
---node 17
---node 36
node 61

wr

"

| n,, Vsa

1\

»a
et -/

Nk ‘/ "'\ S A VN ,\J \, e /‘\‘

I

‘w\lv -iL"Jh f“‘ "‘I‘l}7

N

\\

LN
A3

‘A\ .’-I-”‘--\

\
-~ LY
"".-"\ ' Ao L7

K

\. ,.,\0\ 0\4'\_«/ Cran”?

-
_—nl"--‘ !

‘ N ¥

v
'\nlr\f-—

o~
'

"yh -

]
J
"I' —

0.92 '

Shot

U.S. Department of Energy

13
Time (Hour)

16

19

22



Performance of CReST-VCT

The optimization time is about | hour of simulation time for one
full day (total of 12 interval per hour * 24 hours per day = 288
optimization points per day).

By analyzing the results, we found less than 1% of infeasible
solutions out of 105,120 optimization points in one year.

There are two risks related to computation and solvers for the
optimization model at each 5 minute time step. These two risks
are:

— The time to solve the optimization problem is larger than the optimization
step of 5-min (risk level is low)

— Solver infeasibility of the optimization problem (risk level is medium)

There are a number of mitigation options that are applicable to
one or both of these two
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Questions!?

v v v Dy Dy Dy Dy Dy Dy Dy D

Thanks!

Contact Information:

Nader Samaan, Ph.D., PE.

Sr. Power Systems Research Engineer
Electricity Infrastructure Group

Pacific Northwest National Laboratory
PO. Box 999, MSIN J4-90

Richland, WA 99352

Phone: (509) 375-2954 (O)

Email: nader.samaan@pnnl.gov
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