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• The current state of the art grid is sensor starved

• At the transmission level, grid operators have no visibility 
into the current amount of distributed PV generation

• At the distribution level, there is the need to have more 
visibility into DER output and two-way communication (?) 

Project Innovation

Image source: Siemens

Objective: Communicate the state of the grid from the inverter to the system 
operator  
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• Full-scale, operational implementation of the 
opportunistic hybrid communication system:
o Hybrid: various communications pathways, e.g. SCADA, PLC, 

Zigbee, etc.
o Opportunistic: route messages through each of these systems 

based on recent data about latency and availability to ensure 
reliable message passing.

Project Objectives



Distributed State Estimation Algorithms for 
PV System and Distribution System
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Distribution Network with High Penetrated PVs

Real-time, Economic, and Scalable 
Aggregation of Behind The Meter 

Information
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• PV States: PV inverter AC power output

• Kalman Filter: Temporal dynamic state estimation

o Multi-rate: Under-sampling of measurements

o Event-driven: Regular sampling in case of significant 
event

• Kriging: Spatial estimation at unobserved location

PV System State Estimation
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Irradiance Time Series Model at 1-min Resolution

0.6 mi

0.47 mi

0.5 mi

0.35 mi

7 8 9 10 11 12 13 14 15 16 17 18
0

200

400

600

800

1000

1200

1400

Time (Hours)

G
H

I
 (

w
/
m

2
)

GHI at Oahu on June 4th, 2011

 

 

GHI

Clear Sky GHI

Runway, Kalaeloa Airport

8 10 12 14 16 18
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time (Hours)

lo
g

(G
H

I/
G

H
I c

s
)

Normalized GHI at Oahu on June 4th, 2011

 

 

1-Sec Data
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Kalman Filter from AR(p) Model

1 2 3 4 5 6 7 8 9 10
0.18

0.2

0.22

0.24

0.26

0.28

0.3

Autoregressive Model Order p

R
M

S
E

 

 

 t = 5 min

 t = 10 min

 t = 15 min

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Measurement Update Interval  t (min)

R
M

S
E

 

 

Autoregressive Model Order, p = 1

6 8 10 12 14 16 18
-2.5

-2

-1.5

-1

-0.5

0

0.5

Time (Hour)

y
(s

i,t
)

Multi-Rate and Event Driven Sampling Illustration
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Kalman Filter with Kriging: Spatial LMMSE Estimate
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Original (DH3)

Estimated

Krigged (AP3)

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Separation (miles)

C
o

rr
e
la

ti
o

n
 C

o
e
ff

ic
ie

n
t 

fo
r 

C
S

I

Spatial Correlation Around DH3, June 4, 2011

 

 

Spatial Correlation Coefficient

Least Square Fitted Model: y =0.97699*exp(-0.17627*x)

AP3 Data Missing

• n GHI sensors: 𝒮 = {𝒔1, 𝒔2, … 𝒔𝑛}; 
Spatial covariance: 𝑪𝒮

• Spatial observation at time t,

𝒚𝑡 =
𝑦(𝒔1, 𝑡)

⋮
𝑦(𝒔𝑛, 𝑡)

• Observed:𝑦(𝒔𝑖 , 𝑡); 
Unobserved:𝑦(𝒔𝑗≠𝑖 , 𝑡)

•  𝒙𝑡|𝑡 from 𝑦(𝒔𝑖) and Multi-Rate 

and Event Driven Kalman filter.
• LMMSE:  𝑦(𝒔𝑗≠𝑖 , 𝑡) =

𝐶(𝒔𝑖,𝒔𝑗≠𝑖)

𝜎2(𝒔𝑖)
𝒉𝑇 𝒙𝑡|𝑡
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Power System State Estimation in Distribution Systems

• Radial topology

• Ladder iterative (LI) technique1

o State variables: three-phase complex voltages at each node

o Network reduction

– Combine nodes connected by zero-impedance lines, such as 
fuses, switches etc.

o In each iteration, update node voltage and branch current

[1] William H. Kersting, Distribution System Modeling and Analysis, Third Edition, CRC Press, 2012.

Forward Sweep

Backward Sweep
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Distributed Ladder Iterative State Estimation (DiLISE)

• Automatic Regionalization (Au-Reg) 
based on spectral clustering [1]
o The subnetwork in each region is 

still radial
o Each subnetwork has its own root, 

from which the forward sweep 
starts.

• The master process scans the 
topology of the network only once 
before the iterations start

• Voltages and currents are updated 
asynchronously
o Computationally more efficient 

because of no waiting
o No need for a master process once 

the iterations start

[1] D. Wang et al., “Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems”, in IEEE Global 
Conference on Signal and Information Processing, pp. 1-6, 2016 (invited)

Update state estimates of
, where

Initialization

Forward sweep

Backward sweep

Changes of state estimates in all regions < 
Tol

End

nk Î LiRj,Â j Îd(nk )

Update state estimates of

nk Î L j,Â j Îd(Ri )
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DiLISE Performance

Computation Time 
Reduction by 70%

Impact of Bad Data
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Synchronous Integration of PV and Power System States

 𝒙𝑡
𝑃𝑉

𝒚𝑡
𝑆𝑌𝑆

 𝒙𝑡
𝑃𝑉 = 𝒉 𝒙𝑡

𝑆𝑌𝑆 + 𝒗𝑡
𝑆𝑌𝑆

Distributed State 
Estimation for
Distribution System

Perform 
Kalman Kriging in 
each cluster

Perform 
ADMM [2] based 
Information 
Exchange among 
neighboring clusters

[2]  V. Kekatos, and G.B. Giannakis, “Distributed Robust Power System State Estimation”, IEEE Transactions on Power Systems, 2013.
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• Distributed estimation of PV states

• Distributed distribution system state estimation

• Integration of the two to produce actionable 
information for DSOs/TSOs

Summary



Thank You!
Questions and Discussion



Appendices
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• Taxonomy feeder R2-25.00-1 
from DOE’s Modern Grid 
Initiative representing 
moderate urban 
environment

• System of 1080 nodes on a 
distribution feeder

• 10 percent penetration of 
solar panels

• Fifteen 1-sec irradiance 
measurements from ground 
stations (Desoto)

• Power system data 
determined by the 
Integrated Grid Modelling 
System (IGMS)

Reference Test Case A (RTC-A)

Grid Node
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• Data collected at 1-min (Trans.) 
and 6-sec (Dist.) resolution

o Real and Reactive power

o Voltage magnitude and phase angle

o Miscellaneous variables /parameters 
for sanity checks 

• Reference Test Case A current 
focus for communications 
development, i.e. as input only

• Future T+D+C simulation 
environment for ongoing GMLC 
projects

Integrated Grid Modeling System (IGMS)

FESTIV:
ISO Markets, UC & AGC

MATPOWER
Transmission/Bulk: 

AC Powerflow, Volt/VAr

FESTIV Runtime 
plug-in

MPI Aggregator

bus.py bus.pybus.py bus.py...
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B. Palmintier et al., “IGMS: An Integrated ISO-to-Appliance Scale Grid Modeling System”, in IEEE Trans. Smart Grid, 2016.



Opportunistic Hybrid 
Communication System 
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Smart Grid Communication System Overview

Expected features of Opportunistic Hybrid Networks
• Feasibility: Extensively use existing infrastructure, minimize new hardware to reduce cost.
• Interoperability: Use multiple mixed standardized communication technologies.
• Scalability: Accommodate high penetration of distributed PV.
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Alternative Hybrid Networks for NS3 Simulation

Hybrid Type Home Area Network Neighborhood Area 

Network
Hybrid-1 LoWPAN Ethernet Cable

Hybrid-2 LoWPAN WiFi

Hybrid-3 LoWPAN WiMax

Hybrid-4 PLC Ethernet Cable

Hybrid-5 PLC WiFi

Hybrid-6 PLC WiMax

Note: Reason of LoWPAN instead of well-known Zigbee is Zigbee model can
not cooperate with other technologies in NS-3.
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NS3 based Hybrid Simulation Networks

MAC Layer

LoWPAN/PLC

IPv6

UDP/TCP

Application

PV Inverter

MAC Layer

Physical Layer

IPv6

UDP/TCP

Application - NetRouter

Smart Meter

(subscriber station)

LoWPAN/PLC

MAC Layer

Physical LayerPhysical Layer

WiFi/WiMAX/Ethernet

IPv4

MAC Layer

IPv4

UDP/TCP

Application

Physical Layer

Data Concentrator

(base station)

WiFi/WiMAX/Ethernet

6LoWPAN 
(LoWPAN)

6LoWPAN 
(LoWPAN)

Main Challenge:
Integrate different 
technologies
and IP address mechanisms
into a simulation network.

• Different technology characterized by Phy & MAC layers.
• 6LoWPAN model works as an agent between MAC layer and Network layer, and only supports 

IPv6. While WiFi mesh and WiMAX only support IPv4.
• Smart meter node is configured with two net devices of two technologies.
• NetRouter app is designed to function as IPv6 to IPv4 tunneling and enable IPv6&4 in a 

network.
• Customized Client app and Server app are developed for specific smart grid
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Tree Topology Hybrid Simulation Model

Data concentrator 1

Data concentrator 2

PV inverter 1

PV inverter 2

Smart meter 1

Smart meter 2

Smart meter 5 Smart meter 4

Smart meter 3

PV inverter 4

PV inverter 3

Edge router

LoWPAN, PLC

WiFi, WiMAX, Ethernet cable

Optical Ethernet

Note: Unlimited range of Ethernet causes to Tree topology intuitively;
For WiMAX, range of 50km can cover up to 10km of NAN (Neighborhood Area
Network) with PMP (Point-to-Multiple points) topology.
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WiFi based Mesh Topology

PV inverter 1

PV inverter 2

Smart meter 1

Smart meter 2

Smart meter 5
Smart meter 4

Smart meter 3

Data concentrator 1

Data concentrator 2

PV inverter 4

PV inverter 3

Edge router

Note: With range of 30m-1km, WiFi has to be designed as Mesh topology to
cover up to 10km of Neighborhood Area Network (NAN).
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Hybrid Communication Network: RTC-A Perspective

# of PV inverters: 52
# of smart meters: 126
# of data concentrators: 10
# of edge router: 1
# of areas: 10
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Hybrid Communication Performance
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Middleware Framework

PV Inverter
Smart Meter

(subscriber station)

Data Concentrator

(base station)

Application - NetRouter

Middleware

• Allows the communication node to adaptively and automatically distribute the
data flow to the available links based on their real-time status.
• Not only enhance the QoS of each traffic but also efficiently utilize the existing
multiple network resources.
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Middleware based Opportunistic Communication
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DoS Mitigation through Middleware
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Middleware Framework Contd.

GN

GN
GN

GN
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GN

GN

Aggregator
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Remote 

Server 2

Remote 
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Middleware 

Mechanism

Middleware instances are installed in both 
aggregators and the gateway nodes of the mesh 
network between the aggregators and the remote 
servers. 
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Middleware Development

Power Application 

Layer

Middleware Instance

Network Infrastructure 

Layer

Middleware Instance

Exchange 

information

Send QoS 

Information

Present QoS 

Information

Report QoE 

Score

Infrastructure 

Control

Network Layer

Data Link Layer

Physical Layer

Transport Layer

Network Infrastructure 

Layer

Network Layer

Data Link Layer

Physical Layer

Transport Layer

Send QoS 

Information

Infrastructure 

Control

The real-time distributed 
middleware instances are able to 
manage data flows of different 
smart grid application services by 
exploiting the collaboration of 
different OSI layers. 
The middleware instances 
belonging to different network 
devices are able to communicate 
its neighboring nodes.
The middleware instances have 
the same structure and functions 
and the only difference is that the 
middleware instance installed in 
end host has an Application 
Program Interface (API) that can 
send control commands to the 
middleware instances installed in 
the individual gateway nodes in 
real time. 
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Middleware Mechanism

QoS Standard 

Database

QoS Information of 

Data Flow n from 

Infrastructure Layer

QoS Criteria

Receive Message 

from Neighboring  

Nodes 

Pass

Fail

QoS Information of 

Data Flow 1 from 

Infrastructure Layer

QoS Criteria

Control Algorithm

Pass

Fail

Send Message to 

Neighboring Nodes 

Buffer for QoS 

Information

Network Infrastructure 

Layer Control 

e.g. Routing Control

QoE Setting 

Change

Boardcast to 

All the 

Neighboring 

Nodes Having 

Middleware 

Instances

Receive QoE 

specification message 

generated from 

Remote Users

QoS Information of 

Data Flow 2 from 

Infrastructure Layer

QoS Criteria

Pass

Fail

Save

Receive QoE 

specification message 

generated from Local 

Users

QoS Monitoring System
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State-Space Model from AR(p)

• AR(p) Model

𝑥𝑡 + 𝑎1 𝑎2…𝑎𝑝−1 𝑎𝑝

𝑥𝑡−1
𝑥𝑡−2
⋮

𝑥𝑡−𝑝

= 𝑤𝑡; 𝑤𝑡~𝒩(0, 𝜎𝑤
2)

• Define

𝒘𝑡 =

𝑤𝑡

0
⋮
0

; 𝒙𝑡 =

𝑥𝑡
𝑥𝑡−1
⋮

𝑥𝑡−𝑝+1

• State-Space Model

𝒙𝑡 =

−𝑎1
1
0
⋮
0

−𝑎2
0
1
⋮
0

−𝑎3
0
0
⋮
…

…
0
0
⋮
1

−𝑎𝑝
0
0
⋮
0

𝒙𝑡−1 +𝒘𝑡 = 𝑭𝒙𝑡−1 +𝒘𝑡

𝑦𝑡 = 1 0 … 0 𝒙𝑡 = 𝒉𝑇𝒙𝑡 + 𝑣𝑡; 𝑣𝑡~𝒩(0, 𝜎𝑣
2)
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PV Power Output Profile for RTC-A

DeSoto, FL Sensor

NSRDB
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IDW and Kriging based Spatial Estimation

Observed Locations,
𝒔𝑖 ∈ 𝒮 = {𝒔1, … , 𝒔𝑛} Unobserved 

Locations, 𝒔𝑗 ∉ 𝒮

NSRDB

PV_Lib

Oahu, HI (range ≤ 0.7 miles) 
DeSoto, FL (range: 0.7 ~ 4 miles)

PV_Lib

𝑆𝑃𝐼 𝒔𝑖 , 𝑡 =
𝑃(𝒔𝑖 , 𝑡)

𝑃𝐶𝑆(𝒔𝑖 , 𝑡)

Semivariogram
Model Fitting 
and Kriging

Inverse Distance 
Weighted (IDW) 

Average

 𝑃(𝒔𝑗 , 𝑡)
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5 Clusters of Wide Area PV Footprint

Clustering over 

the Kriged PV 

power output at 

RTC-A locations
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F

H

F

H

Kt

t : Discrete time instance
T : Sampling interval

Kalman Filter

[1] Adapted from Stephen Boyd, “EE 363 (Winter 2008-09) Lecture 8”
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Multi-rate and Event Driven Sampling

t : Discrete time instance
T : Sampling interval
D: Decimation factor
𝛿: Threshold



39

Kriging

LMMSE estimate at 
unobserved locations

Historical spatial 
observation 

𝛾 𝒔𝑖 , 𝒔𝑗 = 0.5 × 𝑉𝑎𝑟{𝑦 𝒔𝑖 ~ 𝑦 𝒔𝑗 }

Given Data KrigingInverse Distance Weighted 
Average (IDW) [2] Adapted from Mitas et al, “Ch 34: Spatial Interpolation” in GIS Vol.1, 1999.

Semivariogram

𝐶0
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• Spatial covariance, 𝐶𝑖𝑗 = 𝑠𝑖𝑙𝑙 − 𝛾 𝒔𝑖 , 𝒔𝑗

• Solve for weights 𝜆𝑘,

• Kriged estimate at location 𝒔0,  𝑦 𝒔0 =
 𝑘≠0 𝜆𝑘𝑦(𝒔𝑘)

• Kriging variance,

Kriging Cntd.

(𝒔0)
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Step 1: Solar Power Index (SPI), DeSoto, Fl

• Irradiance and weather data are fed to PV_Lib

toolbox [1] assuming 2.5kW capacity

• Sampling interval, T = 1 min

• Inverter loading ratio = 1.48
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[1] PV_Lib Toolbox, Sandia Natioanl Lab, Online: https://pvpmc.sandia.gov/applications/pv_lib-toolbox/
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Step 2: IDW based Clear Sky AC Power

NSRDB

𝑃𝑐𝑠 𝒔0, 𝑡

=
 𝑖=1
4 𝑃𝑐𝑠 𝒔𝑖 , 𝑡 /|𝒔0 − 𝒔𝑖|

2

 𝑖=1
𝑛 1/|𝒔0 − 𝒔𝑖|

2
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Step 3: Exponential Semivariogram Model Fitting 
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Sample

0.121{1-exp(-0.91d)}

Exponential model

𝛾 𝑑 =  
0, 𝑑 = 0

𝐶0 + 𝐶1 1 − exp(𝐶2𝑑) , 𝑑 ≠ 0

𝐶0

𝑆𝑖𝑙𝑙 = 𝐶0 + 𝐶1

𝛾 𝒔𝑖 , 𝒔𝑗 = 0.5 × 𝑉𝑎𝑟{𝑦 𝒔𝑖 ~ 𝑦 𝒔𝑗 }

Spatial covariance, 𝐶𝑖𝑗 = 𝑠𝑖𝑙𝑙 − 𝛾 𝒔𝑖 , 𝒔𝑗

Oahu, HI

T = 1min
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State-Space Model from AR(p)

• AR(p) Model

𝑥𝑡 + 𝑎1 𝑎2…𝑎𝑝−1 𝑎𝑝

𝑥𝑡−1
𝑥𝑡−2
⋮

𝑥𝑡−𝑝

= 𝑤𝑡; 𝑤𝑡~𝒩(0, 𝜎𝑤
2)

• Define

𝒘𝑡 =

𝑤𝑡

0
⋮
0

; 𝒙𝑡 =

𝑥𝑡
𝑥𝑡−1
⋮

𝑥𝑡−𝑝+1

• State-Space Model

𝒙𝑡 =

−𝑎1
1
0
⋮
0

−𝑎2
0
1
⋮
0

−𝑎3
0
0
⋮
…

…
0
0
⋮
1

−𝑎𝑝
0
0
⋮
0

𝒙𝑡−1 +𝒘𝑡 = 𝑭𝒙𝑡−1 +𝒘𝑡

𝑦𝑡 = 1 0 … 0 𝒙𝑡 = 𝒉𝑇𝒙𝑡 + 𝑣𝑡; 𝑣𝑡~𝒩(0, 𝜎𝑣
2)
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• Utilize  𝒚𝑡 for Kalman filter if 𝒚𝑡 − 𝒚𝑡−1 ≥ 𝛿

• Else follow the multi-rate measurement update.

Event Driven (EDRI) Kalman Filter Performance
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Multi-Rate and Event Driven Sampling Illustration
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Candidate Sensor Selection in Local Neighborhood

RMSE in Kriging for Unobserved Sensor
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t: 5 mins; Threshold: 0.5  max(absolute difference)
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Automatic Regionalization

• Weighted adjacency matrix design (nodes i and j)

– Topology Based Similarity (TBS) 𝑤𝑖𝑗 =

 
1, 𝑁𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– Measurement Based Similarity (MBS)

𝑤𝑖𝑗 =  
1,𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑎𝑟𝑒 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑓𝑜𝑟 𝑖 𝑎𝑛𝑑 𝑗

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

– Weighted Measurement Based Similarity (WMBS)

𝑤𝑖𝑗 =  
 

𝑝∈𝒫
𝑐𝑝, 𝒫 = 𝑝|

𝜕𝑧𝑝

𝜕𝑥𝑖
≠ 0 𝑎𝑛𝑑

𝜕𝑧𝑝

𝜕𝑥𝑗
≠ 0 ≠ ∅

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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5 Clusters of RTC-A Network

D. Wang et al., “Automatic Regionalization Algorithm for Distributed State Estimation in Power Systems”, in IEEE Global 

Conference on Signal and Information Processing, pp. 1-6, 2016 

Network 

Clusters are 

Different from 

PV Clusters
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PV Statistics Integration

PV Inverter

Irradiance 
Sensor

Local Spatial 
PV 
footprint(Corr
elation 
Coefficient 
>80%)

Electrically 
Regionalized

(MREDRIKK + ADMM) 
+

DLIA


