
US DOE Envelope and Windows Roadmap Workshop

ENERGY Energy Efficiency & Renewable Energy

Marc LaFrance 31 May 2017 IIT, Chicago

Buildings Largest End-use Sector for Energy Consumption

Residential & Commercial

Industrial

Transportation

Energy Efficiency & Renewable Energy

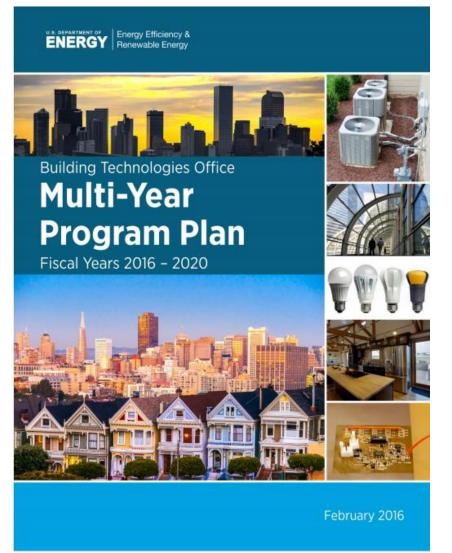
U.S. Building's Energy Consumption and Expenditures

Snace Heating 19.8%

Building Energy Use

Othor 9 E%

Envelope & Windows Impact Over 50% of Loads


Computers 2.3%		3.0%				
Ventillation 2.8%		Building Component	Residential (quads)		Commercial (quads)	
Wet Cleaning		bunung component	Heating	Cooling	Heating	Cooling
3.3%		Roofs	1.00	0.49	0.88	0.05
Cooking 3.4%		Walls	1.54	0.34	1.48	-0.03
Refrigeration	Total:	Foundation	1.17	-0.22	0.79	-0.21
5.8%	38.8 Lighting Quads	Infiltration	2.26	0.59	1.29	-0.15
Model Adjust 6.3%	Quads 17.7%	Window (conduction)	2.06	0.03	1.60	-0.30
Electronics 7.8%		Window (solar heat gain)	-0.66	1.14	-0.97	1.38
Water Heating 9.6%	Space Cooling 12.7%					

Buildings Natural Gas Use: 60% of U.S. total Buildings Electricity Use: 75% of U.S. total U.S. Building Energy Bill: \$380 billion per year

Energy Efficiency & Renewable Energy

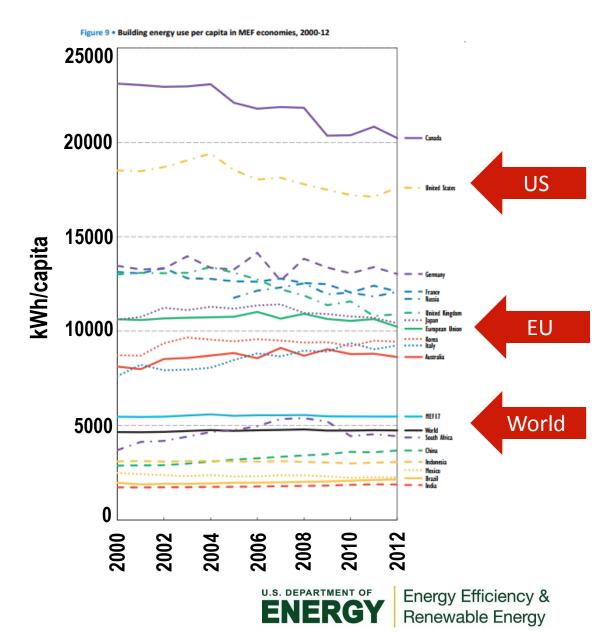
BTO 2016-2020 Multi-Year Program Plan

BTO Goal:

- 2030 goal: Reduce average energy use per square foot of U.S. buildings by
 30% below 2010 levels
- Long-term goal: reduce average EUI of U.S. buildings by 50%

National Goals:

- By 2030, double energy productivity relative to 2010
- Reduce greenhouse gas emissions
 26%–28% below 2005 levels by 2025

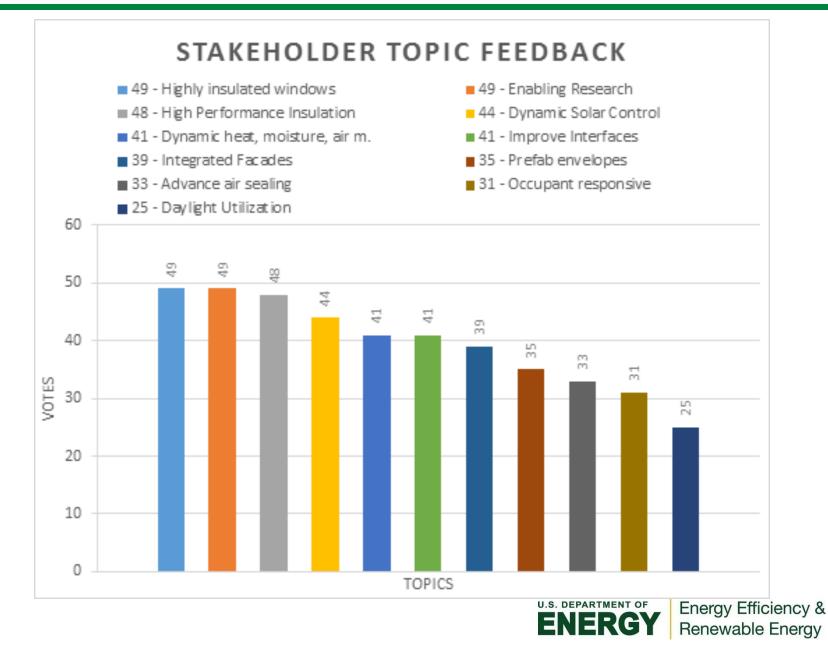

Energy Efficiency & Renewable Energy

http://energy.gov/eere/buildings/downloads/multi-year-program-plan

Building Energy Consumption per Capita

- US has one of the highest building energy use per capita of the world
- UK has had one of the fastest declines
- Energy efficient materials and products, building codes and overall energy policy drive reductions

Source: IEA, Building Energy Performance Metrics Report, 2015



Objectives for Workshop

- Confirm critical role that Building Envelope and Windows play in achieving BTO Goals
- Seek stakeholder input that will contribute to an update to the building envelope and windows technology roadmap
- Identify goals and actions to achieve technological progress that will result in less energy consumption in the buildings sector while supporting associated benefits (e.g. peak load reduction, job creation, productivity, etc)
- Identify opportunities for DOE R&D investment, dependent upon funding and priorities
- Identify high risk scientific challenges and material development opportunities for national laboratory and academia investigations
- Identify actions with partners for implementation including approaches to overcome barriers to adoption

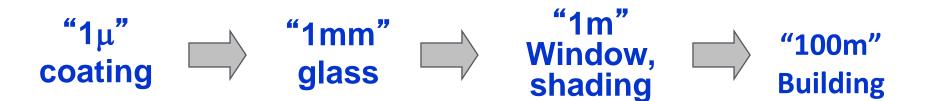
Participant Responses from Registration Page

- DOE Envelope and Windows Roadmap
 - Highly insulated windows, dynamic windows, and daylighting
 - Thin high performance insulation, advanced air sealing, and highly insulated roofs
- Building America Research to Market Plan
 - High performance moisture managed envelopes; optimal comfort for lowload homes; optimal ventilation and IAQ
- IEA Building Energy Efficiency Envelope Roadmap
 - Global regional assessments on high priority technology adoption and performance metrics
 - Identification of high priority technologies and actions associated by entity
 - Policy assessments
- Competitive Financial Opportunities
 - FY17 BENEFIT: Innovative, HVAC, Sensors & Control, Scale up > up to 20M
 - FY 17 SBIR Windows focus on highly insulating, dynamic, fundamental supporting science

Current Roadmap Goals/Targets – Review & Update Needed

Technology	2025 Installed Cost Premium Target	2025 Performance Target		
Highest Priority R&D Area				
R-10 Windows	Residential: ≤ \$6/ft ² Commercial: ≤ \$3/ft ² over typical 2010 windows	 Residential: R-10, V_T > 0.6 Commercial: R-7, V_T > 0.4 Comparable weight and thickness to currently installed base 		
High Priority R&D Areas				
Dynamic Windows	Windows: ≤ \$8/ft ² Window Films: ≤ \$2/ft ² over a standard IGU	 ΔSHGC > 0.4 V_T bleached state > 0.6 (residential) and > 0.4 (commercial) 		
Visible light redirection (commercial)	≤ \$5/ft ² over standard window or shade including lighting and controls costs	50% reduction in lighting energy use over a 50-ft floor plate		

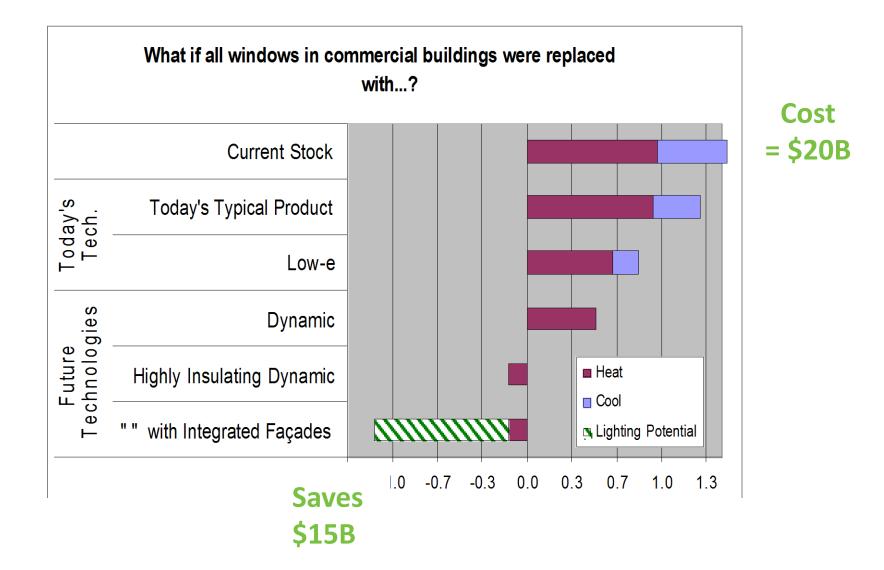
Vision: Convert Windows to Net Zero Energy: +5Q


Strategy: Energy Losers -> Neutral -> Supply Net Energy Performance Gaps: Defined by Climate/Energy Function

- Heating climates
 - Reduce heat losses so solar energy balances and exceeds loss
 - Gap: technologies with lower heat loss, U ~.1
- Cooling climates
 - Reduce cooling loads but allow daylight/view
 - <u>Gap</u>: Shift from Static properties -> dynamic control of SHGC, Tv
- All climates Lighting, Ventilation
 - Replace electric lighting with daylight
 - Gap: extend daylight use to 30' depth
 - <u>Utilize natural ventilation w/ operable windows</u>
- Electricity supply options
 - Photovoltaics-building skin as power source

Glazing and Façade R&D Landscape

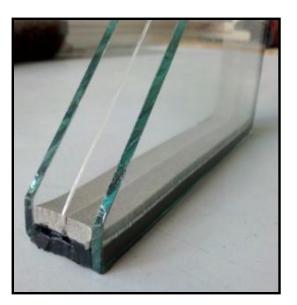
Multiple "Scales" for R&D and Innovation Nano \rightarrow Micro \rightarrow Macro


Next Generation of Windows

- Highly insulated, dynamic solar control, daylighting
 - Commercially available products in both areas but very low market penetration, and low likelihood of rapid change
 - What technology or market innovation could change that?
- Value to low energy buildings
 - Improved thermal and visual comfort, reduced noise, smaller HVAC, reduced peak loads
 - Residential: eliminate branch duct work and allow for more window area
 - Commercial: perimeter zone conditioning eliminated, lower utility rates linked to peak demand
- How to build consumer demand, industry feedback?
 - R&D innovation: more features at lower cost
 - Voluntary programs to grow market demand
 - Mandatory codes and standards, as proposed in Canada for Hi-R
 - Improve value proposition on conventional window replacements, etc

"Zero Net Energy" facades: National Impacts

Converting a \$20B/yr cost to a \$15B/yr Net Surplus!


Current Windows Activity

- Competitive Financial Awards
 - WCMA: Attachments Energy Rating Council (AERC)
 - Arconic: Novel Thermal Break with Simplified Manufacturing for R-7 Commercial Windows
 - LBNL and Pella: Highly Insulating Residential Windows Using Smart Automated Shading
- Annual Operating Plan Projects
 - LBNL: window suite of software tools development and maintenance, technology development, and Energy Star Most Efficient support, and five specialized laboratory facilities for development and validation
 - NREL: durability testing, and installed cost analysis difficult to find an easy reduced, better consumer education needed, customer acquisition
- International Collaboration India (CBERD) and China (CERC 2), small level of effort on window activity

Stepping Stone to Next-Gen Windows: "R8 Thin Triples"

- Market "stuck" at Energy Star window, double, low-E, R3
 - No Market Pull so manufacturers won't invest in triples: now <2% sales
 - Transition to Much Lower U =~.1 .15 would save 1+ Quad
- Challenge: Drop-in "R8 IGU Glazing" to replace current R4 IGU
 - No change in IGU weight, width -> no need for expensive sash redesign
- New R8 IGU added to existing frame will improve Window R3 -> R6
- Technology approach
 - Add thin (.7mm) glass layer, extra low-E, improved spacer, Krypton gas fill
 - Optimized thermal package can achieve R10
 - Other package benefits: e.g comfort, smaller HVAC
- Benefits
 - Improved Comfort, Larger window size w/codes, lower HVAC, big energy savings
 - Primes housing market for more extensive future change, vacuum windows, smart windows, etc
- Status: LBNL has validated concept with proof prototypes
 - Assembled 6 industry partners to advance to pilot line

Energy Efficiency & Renewable Energy

Key Challenges and Opportunities for Windows

- Window replacement not usually cost effective based on energy benefits unless replacing window anyway
 - reduce installed cost (new and retrofit)
- Ensuring quality, consistent installation, and transparency on what customers buy
 - replacement window vs new window
- Integrated wall/window upgrade as a system should reduce cost and add "market value" to homes
 - Is it possible to get early window replacement based on home value improvements?
- Value proposition to consumers can be increased by reducing cost and fully assessing benefits
 - all energy impacts: infiltration, comfort, thermostat settings; and nonenergy benefits: reduced noise, aesthetics, resale and market value, etc

Energy Efficiency & Renewable Energy

- Gaps and Opportunities
 - What is broken, how can things be improved, what barriers are holding back greater investment into building envelopes and windows
- Technical Solutions
 - Refine and re-confirm, as appropriate, DOE existing technology strategies
 - Explore fundamental new approaches that could offer greater value proposition with significant R&D over a longer timeframe
 - Define near term solutions that can be pursued by stakeholders with specialized technical support from national laboratories
- Innovative Technology Pathways and Implementation
 - Define actions by entities on how to develop and implement technology solutions
 - Identify suggested priorities, metrics and goals

Contact Information – Residential and Emerging Technologies Teams

P Marc LaFrance, CEM

Advanced Technology and Energy Policy Manager

US Department of Energy

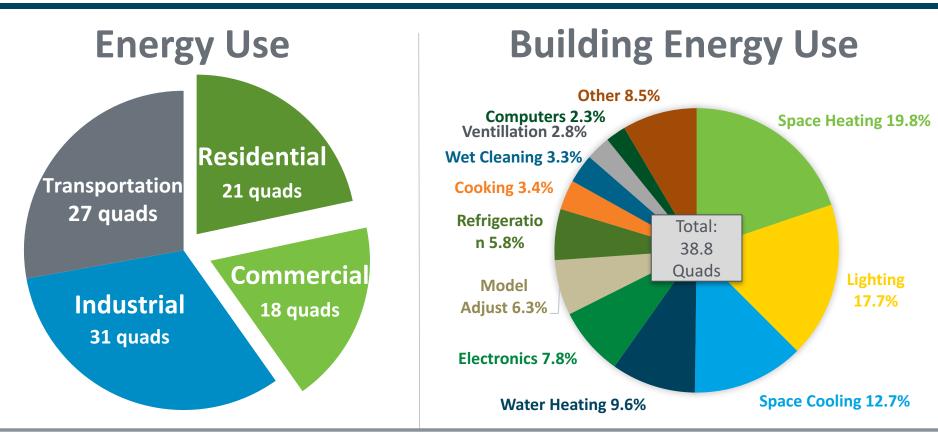
1000 Independence Ave, SW

Washington, DC 20585-0121

marc.lafrance@ee.doe.gov

202-586-4972

Cell 240-474-2177


DOE Envelope and Windows Workshop

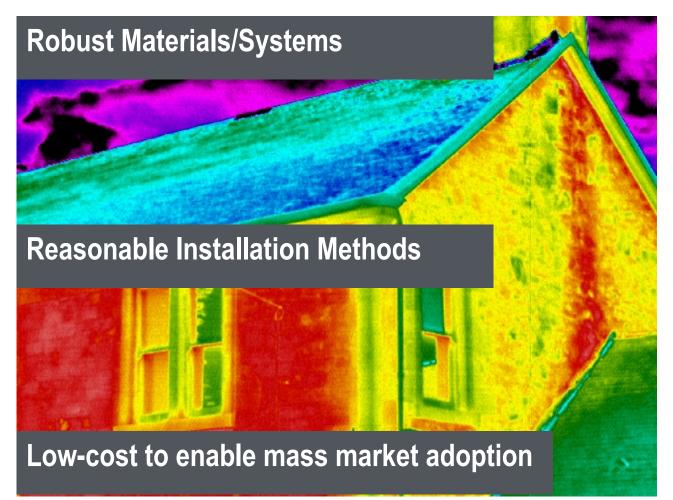
ENERGY Energy Efficiency & Renewable Energy

Sven Mumme Envelope Technology Manager May 31, 2017 | Chicago, IL

U.S. Energy and Electricity Consumption by Sector

Buildings Energy Use: 40% of U.S. total Buildings Electricity Use: 75% of U.S. total U.S. Building Energy Bill: \$380 billion per year

Two Strategies for Reducing Energy Consumption


1. Make more efficient machines

Two Strategies for Reducing Energy Consumption

2. Be smarter about how we use energy

Energy use associated with the envelope (2010)

Opaque envelope 7.3 quads

Roofs	2.4 quads
Walls	3.3 quads
Foundation	1.5 quads

Air Infiltration 4 quads

Windows 4.3 quads

Windows & Building Envelope Program Goal:

25% Reduction in Energy Consumption due to Building Envelope by 2030

- Building Envelope
- Commercial & Residential Sectors
- New Buildings & Retrofits

Requires next-generation energy efficiency technologies for mass-market adoption

Priority areas for envelope R&D based on roadmap

• Technology	2025 Installed Cost Premium Target	2025 Performance Target		
Highest Priority R&D Area				
Building envelope insulation	≤ \$0.25/ft ²	 ≥ R-12/inch thermal insulation material for retrofitting walls Meets durability requirements Minimizes occupant disturbance 		
Air-sealing technologies	≤ \$0.5/ft ² finished floor	 Residential < 1 ACH50 Commercial: < 0.25 CFM75/ft² Concurrently regulates heat, air, and moisture 		
High Priority R&D Areas				
Highly insulating Roofs	≤\$1//ft²	 An energy use reduction equivalent to doubling current ASHRAE R-values 		

Metrics and targets for 2020 and 2025

Metrics, Statuses, and Targets: Building Envelope					
Project Area	Metric	Status	2020 Target	2025 Target	
Building Envelope Material for Retrofit Applications	R/in	R-6/in	R-8/in	R-12/in	
	Installed cost premium (\$/sq. ft.)	\$1.1	\$0.35	\$0.25	
Air-Sealing System: Residential	ACH50	7	3	1	
	Installed cost premium (\$/sq. ft. finished floor area) Incl. mechanical ventilation	\$1.4	\$0.5	\$0.5	
Air-Sealing System: Commercial	CFM75 per 5-sided envelope;	1.38	0.25	0.25	
	Installed cost premium (\$/sq. ft. 5-sided envelope) incl. mechanical ventilation	\$1.40	\$0.60	\$0.50	
Highly Insulating Roof: Commercial	R-value (climate zones 2; 6);	R-17	R-35; R-45	R-50; R-60	
	Installed cost premium over today's roofs (\$/sq. ft.)	\$4.4	\$3	\$1	

- Quick and easy building envelope retrofit solutions that reduce cost and complexity
- Seamless" interfaces/transitions between functional areas (e.g., roof-walls, wallswindows, walls-foundation)
- Novel approaches for measuring envelope infiltration
- Cost-effective air-sealing technologies that are well-suited to retrofit applications (remediate flaws and infiltration points)

Building Envelope R&D Areas of Interest to BTO

New Materials for Building Efficiency

Ultra-low Thermal Conductivity Materials

Multi-functional Materials

Advanced Thermal, Moisture and Air Management: A Dynamic System Approach

At the end of the our two days together.....

- Input to Roadmap update
- Topic areas for possible inclusion in R&D portfolio
 - Idea/technology solution/gap addressed
 - Technology impact/benefit
 - Technology pathway to success
 - Key metrics & targets
- Relevant cross-cutting perspectives
 - Residential & Commercial
 - Retrofit & New Construction

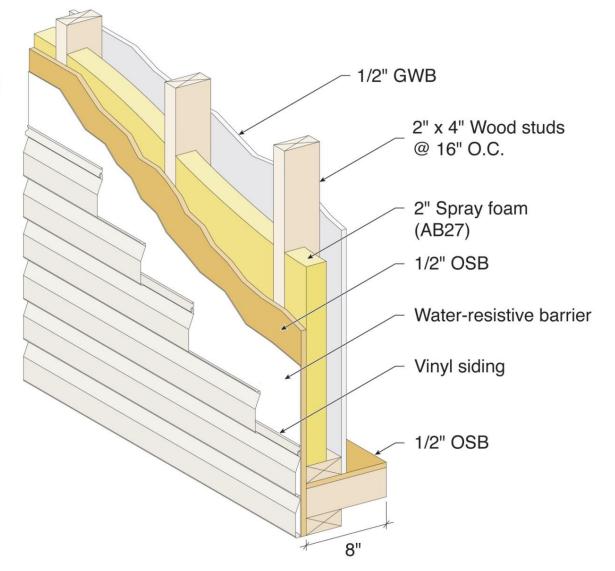
Thank you!

Sven Mumme Technology Manager – Building Envelope US Department of Energy 1000 Independence Ave, SW Washington, DC 20585-0121 Sven.Mumme@ee.doe.gov 202-287-1848

Building Envelope Systems Research

Presented by: Roderick Jackson, Ph.D. Group Leader, Building Envelope Systems Research

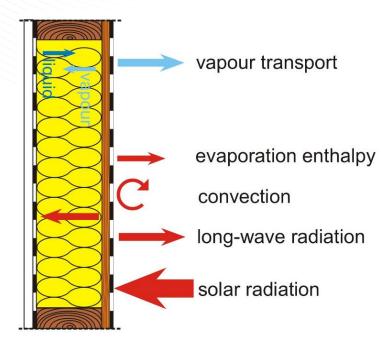
Presented to: DOE Building Envelope and Windows Workshop

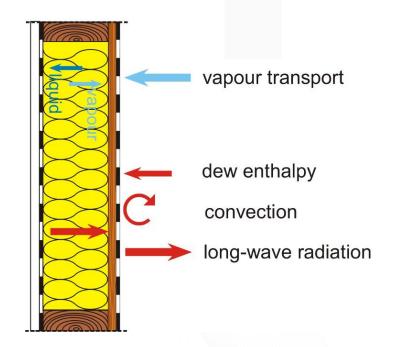


S4.(

ORNL is managed by UT-Battelle for the US Department of Energy

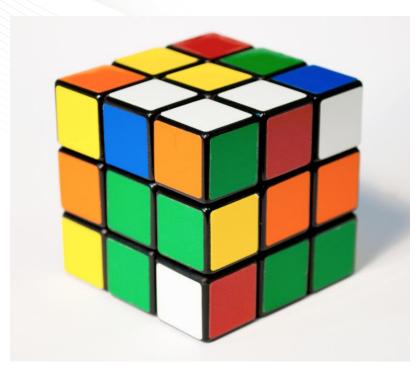
The Building Envelope is a COMPLEX and INTEGRATED SYSTEM





A Complex System with Complex Processes

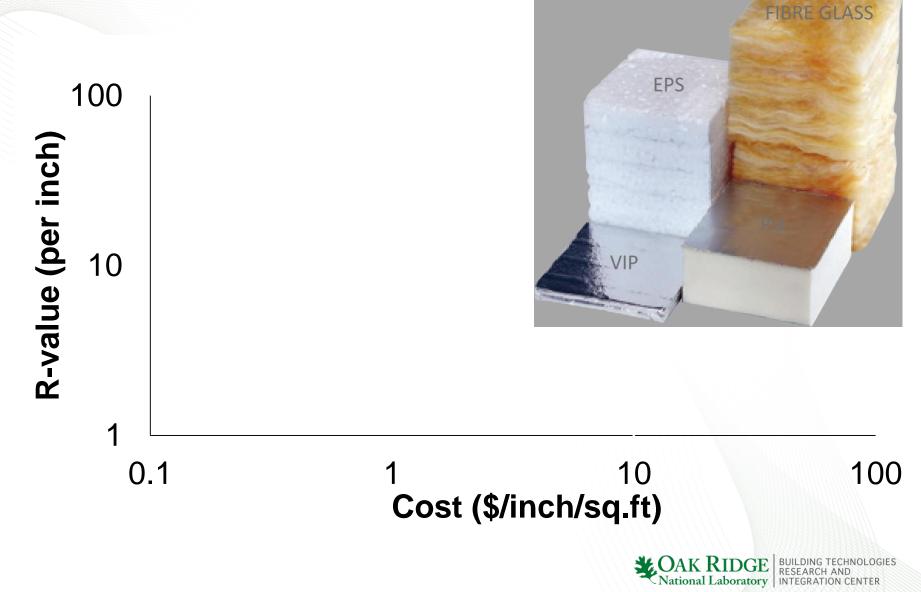
During the day.....

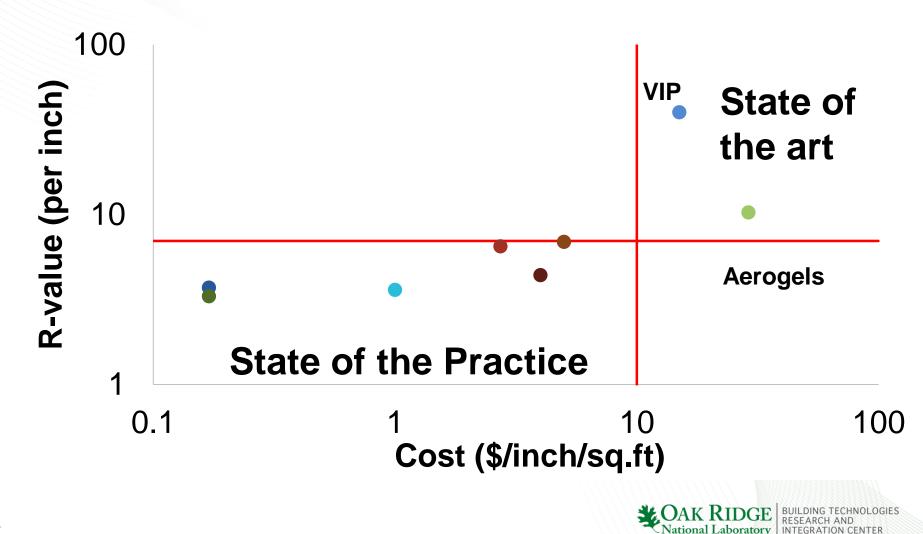

At night.....

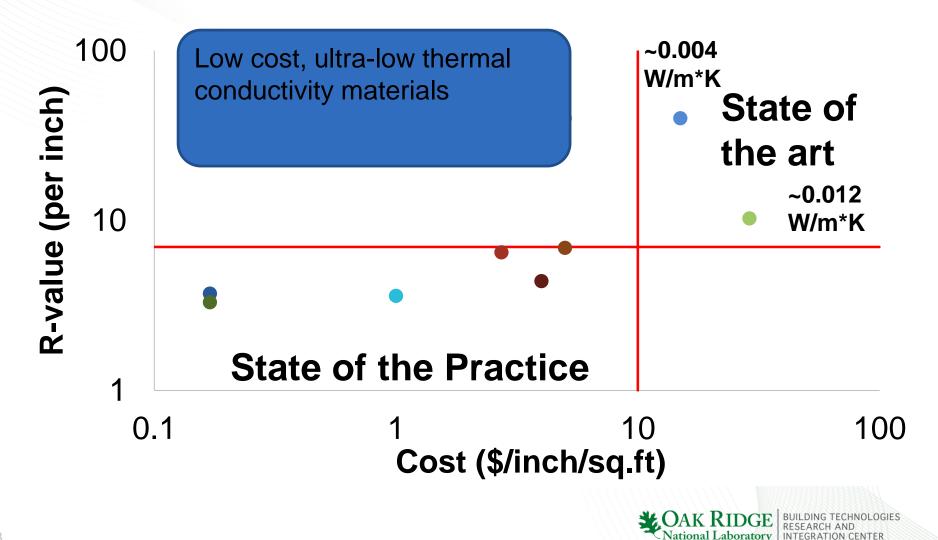
A COMPLEX SYSTEM in a COMPLEX ENVIRONMENT

commons.wikimedia.org

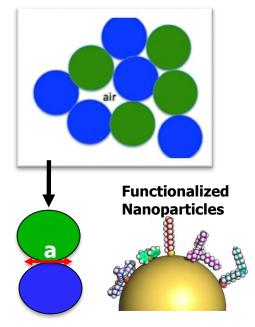
Building Component Requirements

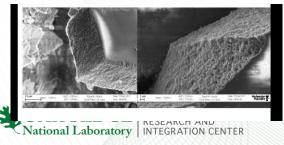

- Many Climates and Extremes
 - Temperature, UV, Wind, Freeze/ Thaw, Moisture, Mold, Fire, Structure, Toxicity, Human Safety
- New vs Retrofit
- Many Building Types
 - Many different designs (parameter mixes)
- Strong Interactions
- Highly Cost Sensitive


Technical Challenges and Current Research


Insulation materials for building envelopes – Innovation opportunities

Insulation materials for building envelopes – Innovation opportunities

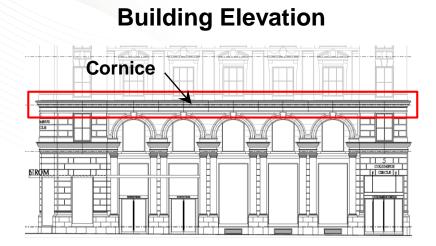

Insulation materials for building envelopes – Innovation opportunities


Robust Super Insulation at a Competitive Price

Technology Summary

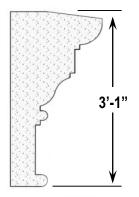
- LBNL is developing a novel insulation using nanoscale phonon engineering to optimize surface energy, particle size, and acoustic property mismatch to achieve R-12/inch.
- R/inch value at least 2 4 times higher than conventional insulation
- Almost an order-of-magnitude lower cost vs. aerogel and VIPs
- Increased mechanical robustness and flexibility vs. aerogel and VIPs

- Particle-particle constriction limits inter-particle phonon transport
- Reduced surface energy and mismatched vibrational spectra further reduce phonon transmission


Modified Atmosphere Insulation Composite Boards

- ORNL/NanoPore/Firestone collaboration: new composite foam-MAI insulation board
- Combination of Modified Atmosphere Insulation (MAI) panels, a low-cost alternative to vacuum insulation, and polyisocyanurate
- Two applications: wall sheathing and commercial roof retrofits
- Second prototype achieved R11.4-R11.9/inch (goal is R-12/inch)
- Energy savings potential of 1,319 TBtu

10


New concretes, composites, and processes for next generation precast envelopes

Current Assembly Process

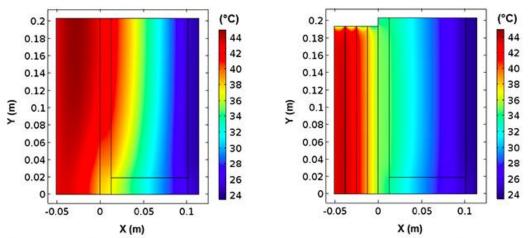
Cornice Cross Section

Can We Manage the Heat Differently?

- The building envelope is not spatially and temporally invariant.
- Why do we manage heat that way?

Thermal Management Using Anisotropy

Reducing Unwanted Heat Flows Through Building Envelopes


ORNL is investigating directional heat dissipation using anisotropy for reducing unwanted heat flows through the building envelope.

Anisotropic Materials and Composites

Anisotropic composites can be created by alternate layering of isotropic materials, with differing overall thermal conductivities (k) along different axes.

Simulations Show Potential for Reducing Unwanted Heat Gains

Calculations showed annual reductions of 9-69% in internal heat gains through a westfacing wall compared to the isotropic exterior insulation case

Calculated temperature distribution in the wall section with exterior insulation (left) vs. anisotropic composite and heat sink (right)

Envisioning a truly integrated dynamic system

Can Multifunctional Materials Enable New Integrated Solutions?

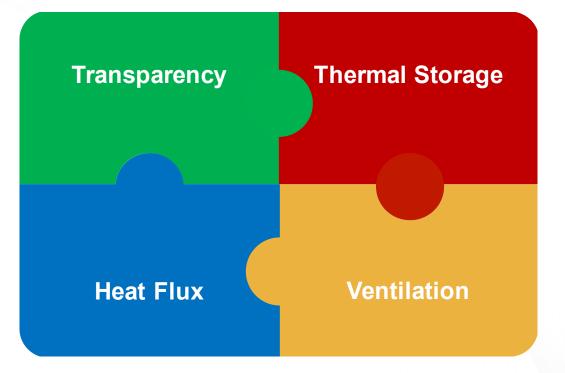
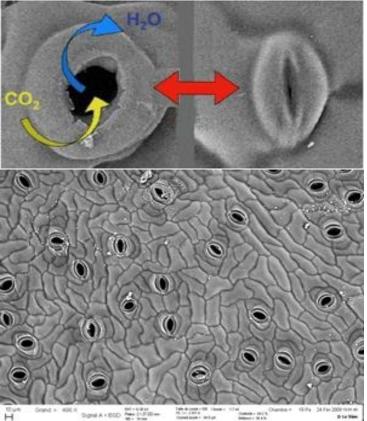
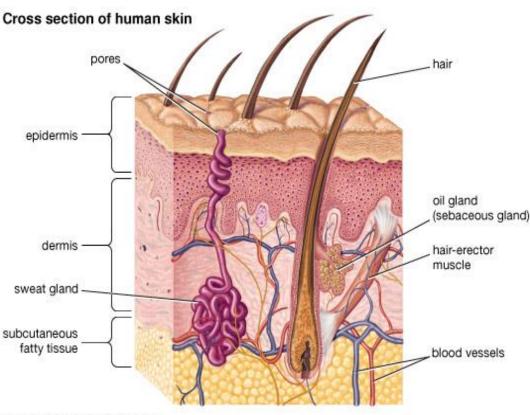


Image source: Fadl Saadi, "Smarter Structures: Synchronizing Building Envelope Technologies"



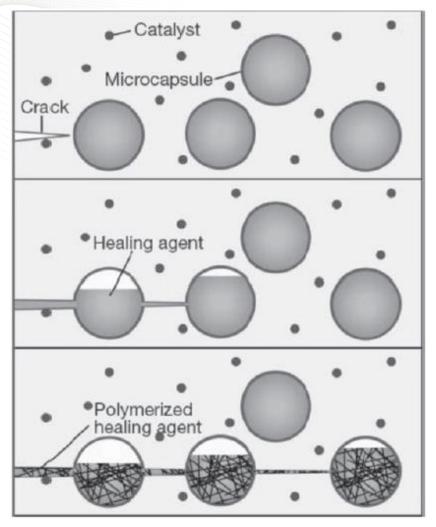
Multifunctional Materials Development


A multifunctional material requires a new design methodology in which system-level performance is emphasized over the optimization of individual functions.

Optimizing system-level performance involves optimization methodologies that are not commonly used in materials science.

The Original Multifunctional Materials...Evolved...

Personnelles/Didier-Le-Thiec



http://www6.nancy.inra.fr/eef_eng/Pages-

© 2010 Encyclopædia Britannica, Inc.

Self Healing Materials

Adv. Mater. 2010, 22, 5424–5430

Responsive to damage/failure event.

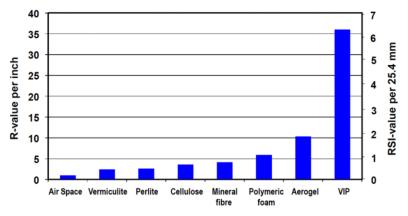
Anticipated that the original functionality can be restored.

Metals, ceramics, concrete, and polymers. Concrete, and National Laboratory BUILDING TECHNOLOGIES RESEARCH AND INTEGRATION CENTER

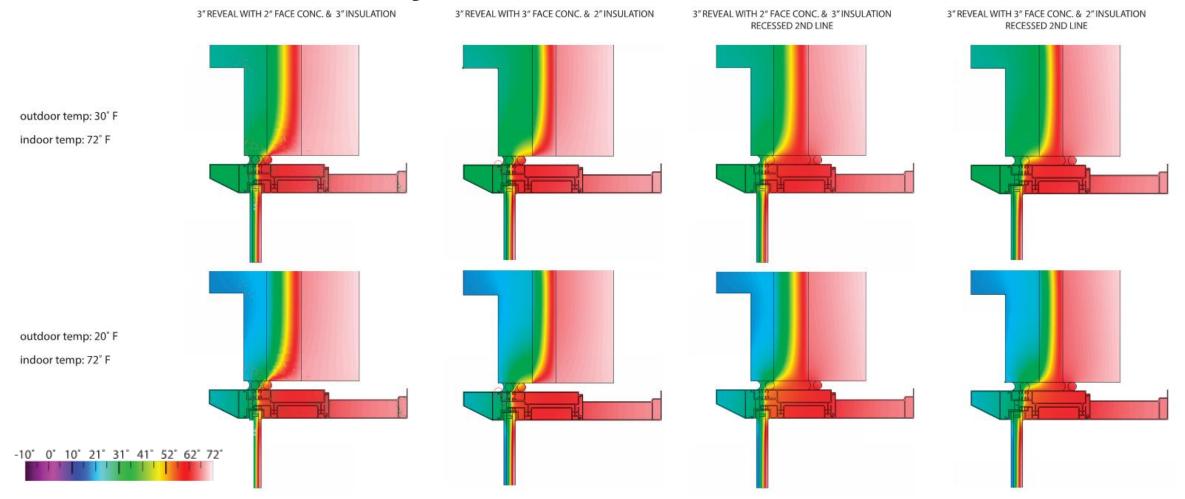
Roderick Jackson, PhD jacksonrk@ornl.gov @Dr_rkjackson

Future of Envelopes (a couple of thoughts)

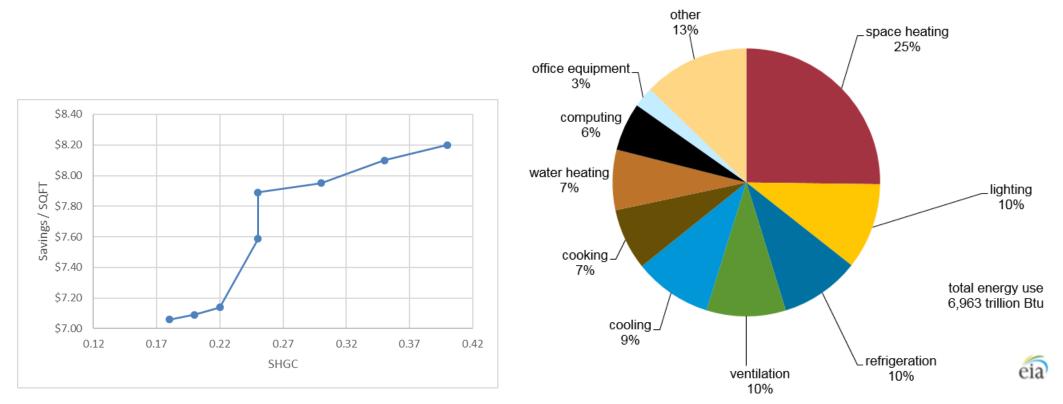
Leonard Sciarra, AIA, LEED ap+, ASHRAE Gensler


So What is the future.....

Integrate the benefits of mass and light frame construction



Insulate more with thinner insulation



Better thermally broken curtain wall

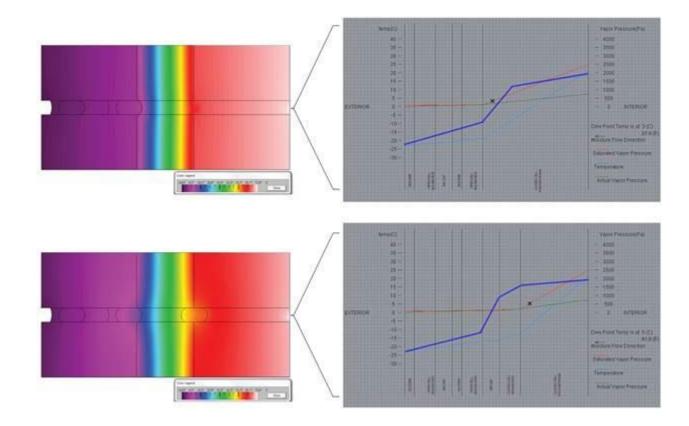
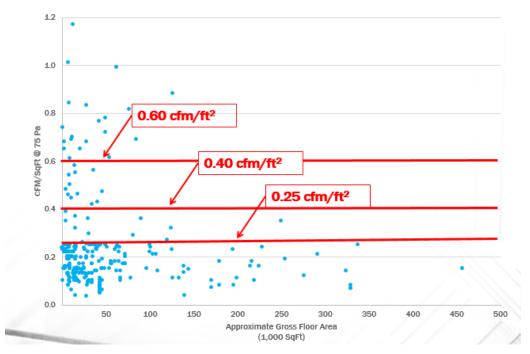

Lower SHGC

Figure 5. Space heating demanded the most overall energy use in commercial buildings in 2012, followed by other uses


Source: U.S. Energy Information Administration, 2012 Commercial Buildings Energy Consumption Survey.

Redundant water management

Air Leakage

• Addendum I – 90.1-2016 Specific Leakage

STANDARD

ANSI/ASHRAE/IES Standard 90.1-2016 (Supersedes ANSI/ASHRAE/IES Standard 90.1-2013) Includes ANSI/ASHRAE/IES addenda listed in Appendix H

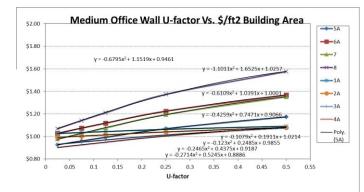
Energy Standard for Buildings Except Low-Rise Residential Buildings

5.4.3.1.3 Testing, Acceptable Materials, and Assemblies

The *building* shall comply with whole-*building* pressurization testing in accordance with Section 5.4.3.1.3(a) or with the *continuous air barrier* requirements in Section 5.4.3.1.3(b) or 5.4.3.1.3(c).

a. Whole-building pressurization testing shall be conducted in accordance with ASTM E779 or ASTM E1827 by an independent third party. The measured air leakage rate of the building envelope shall not exceed 0.40 cfm/ft² under a pressure differential of 0.3 in. of water, with this air leakage rate normalized by the sum of the above and below-grade building envelope areas of the conditioned and semiheated space.

But Breathable


STANDARD

Thermal Bridging

Ongong addendum

The Implementation of 1365-RP into Standard 90.1

Why Implement 1365-RP into Standard 90.1?

ANSI/ASHRAE/IES Standard 90.1-2016 (Supersedes ANSI/ASHRAE/IES Standard 90.1-2013) Includes ANSI/ASHRAE/IES addenda listed in Appendix H

Energy Standard for Buildings Except Low-Rise Residential Buildings

Standard 90.1 provides guidance on determining thermal transmittance through in envelope systems with distributed thermal bridges for a few limited cases. It does not address major thermal bridges such as slab edges, shelf angles, parapets, flashings at window perimeters, etc. In practice, these details are largely overlooked. However, using the information provided by 1365-RP, it is clear that a significant portion of the heat flow through opaque envelope a

that are igr discrepanc into wall as details. SSPC 901 ENV Thermal Bridge Task Group, Sub-Group Findings

> Jonathan Humble Chair - 901-ENV-TB Task Group 16 October 2014

5.5.5 Thermal Bridges. Thermal bridges shall comply with Sections 5.5.5.1 through 5.5.5.3.

Exceptions:

1.Buildings to acco in Climate Zone 1 through 3.

2.Semi-heated buildings located in Climate Zones 1 through 6.

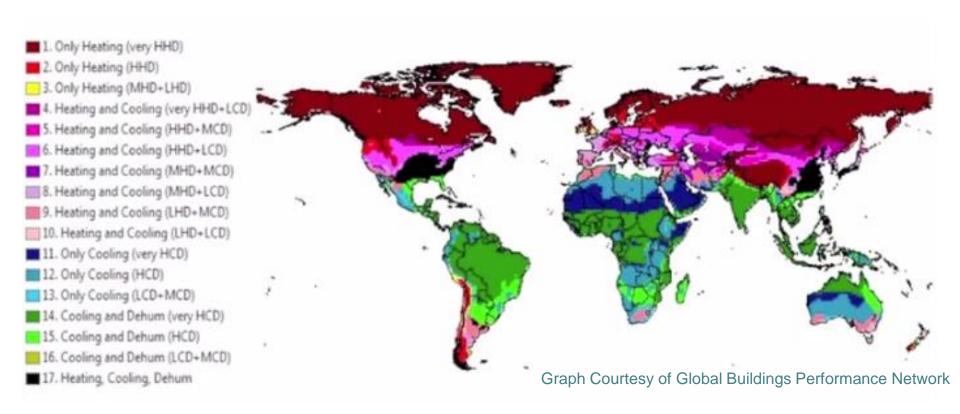
3.Alternative practices shall be permitted where such practices comply with normative

DOE stakeholders conference Appendix A, Section A10.

Building Integrated Power Generation

The Future is now....

Second and Delaware, Kansas City, MO


PASSIVE BUILDING TRENDS

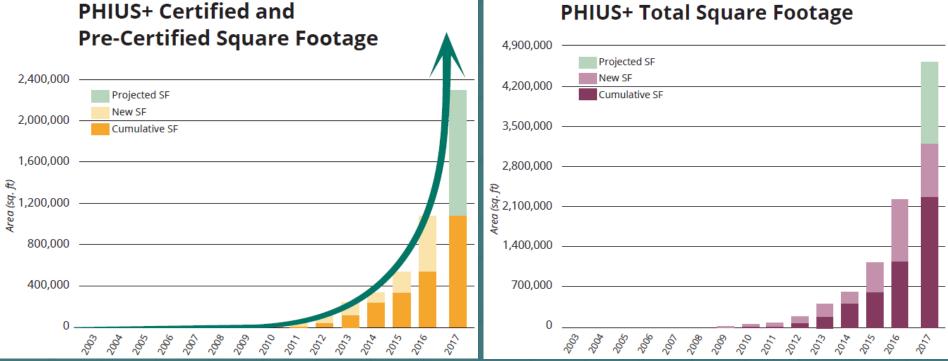
H D

©2016 Passive House Institute US \ PHIUS

E

PHIUS+2015: CLIMATE SPECIFIC DESIGN

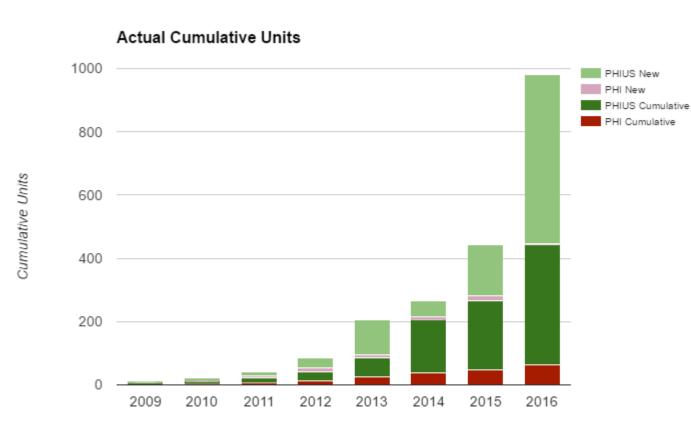
DOE PERFORMANCE STAIRCASE


						Source Zero Renew- able Energy System
					Balanced Ventilation HRV/ERV	Balanced Ventilation HRV/ERV
				SOLAR READY Depends on climate	SOLAR READY ALWAYS	SOLAR READY ALWAYS
				Eff. Comps. & H2O Distrib	Eff. Comps. & H₂O Distrib	Eff. Comps. & H ₂ O Distrib
				Air Pacakge	Air Pacakge	Air Pacakge
				Ducts in Condit. Space	Ducts in Condit. Space	Ducts in Condit. Space
		HVAC QI w/WHV	HVAC QI w/WHV	HVAC QI w/WHV	Micro-load HVAC QI	Micro-load HVAC QI
		Water Management	Water Management	Water Management	Water Management	Water Management
		Independent Verification	Independent Verification	Independent Verification	Independent Verification	Independent Verification
IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2009 Enclosure	IECC 2012 Enclosure	IECC 2012/15 Encl./ES Win.	Ultra-Efficient Enclosure	Ultra-Efficient Enclosure
HERS 85-90	HERS 70-80	HERS 65-75	HERS 55-65	HERS 48-55	HERS 35-45	HERS < 0
IECC 2009	IECC 2012	ENERGY STAR v3	ENERGY STAR v3.1	ZERO ZERH		<u>+C</u> PHIUS+ SourceZero

IECC Enclo

©2017 Passive House Institute US | PHIUS 3

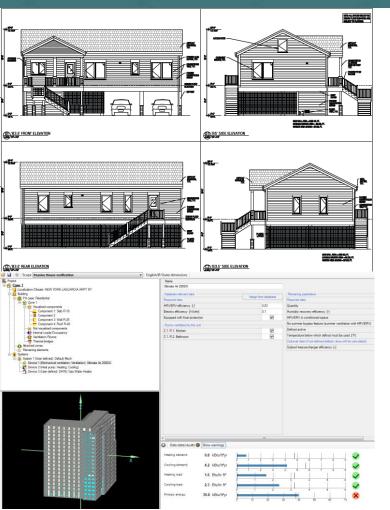
PHIUS+ TRENDS FOR 2017


Source: www.phius.org

95% of total certified and pre-certified passive building construction (SQFT) in NA

© 2017 PHIUS

PHIUS+ AND PHI TRENDS IN NA: CERTIFICATIONS BY END OF 2016



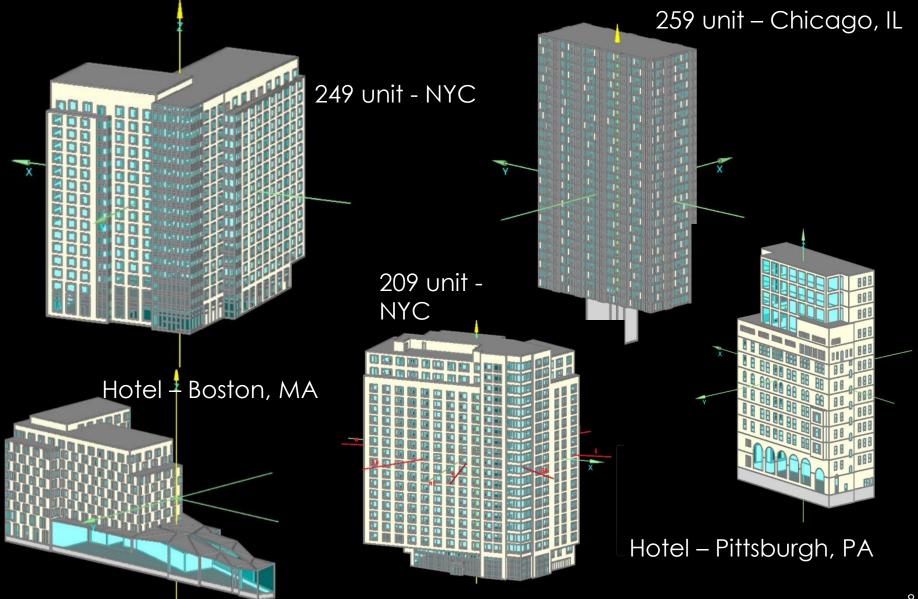
Source: Pembina Institute

Year

© 2017 PHIUS

MULTIFAMILY/COMMERCIAL HAS BETTER **SURFACE TO VOLUME** RATIO THAN SMALLER STRUCTURES

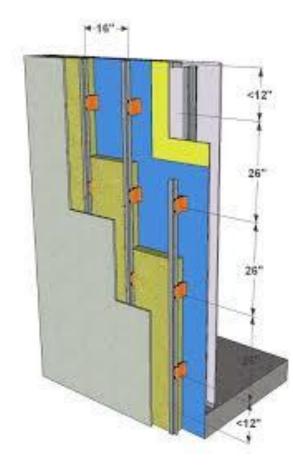
- SF Home Specs 5A: R-50 WALLS R-90 ROOF R-50 SLAB R-8 WINDOWS
- Large MF Specs 5A: •R-32 WALLS •R-50 ROOF •R-20 SLAB •R-5 WINDOWS

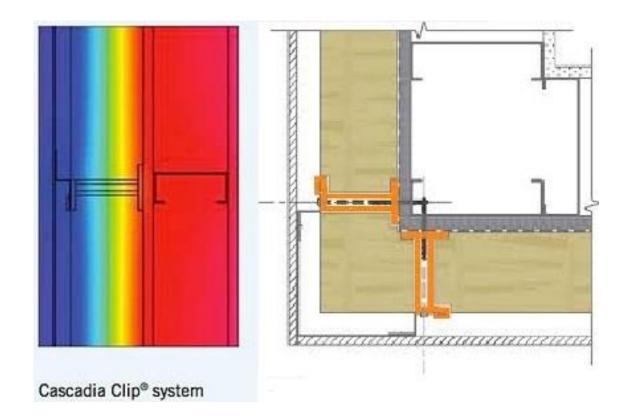

350+ PHIUS PROJECTS NATIONWIDE

70+ MULTIFAMILY SUBMITTED, PRE-CERTIFIED, CERTIFIED

SITE EUIS OF 10-25 kBTU/ft².yr ~20-50% better than DOE's Zero Energy Home Program

FEASIBILITY STUDIES




PASSIVE BUILDING PRINCIPLES

ONTINUOUS INSULATION

THERMAL BREAKS

MINIMIZE POINT TB LOSS

Photo courtesy Jesse Thompson

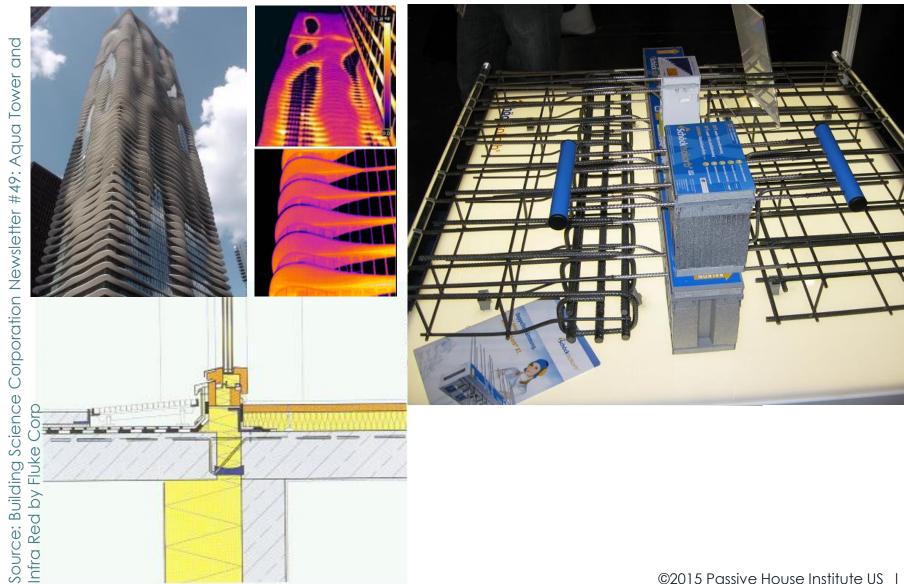
Illustrations by RDH, Shawn Colin, NAPHC 2014

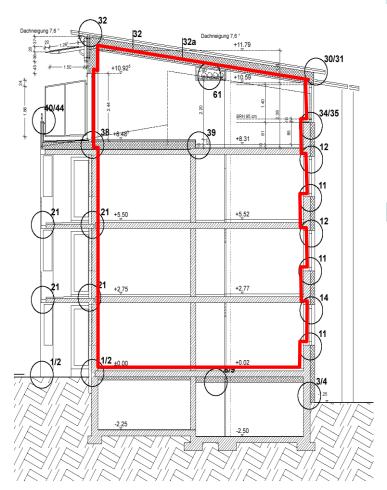
STRUCTURAL THERMAL BRIDGING CAUSED BY CLADDING SYSTEMS ATTACHMENT – RED SPACER BEHIND STAND-OFF=THERMAL BREAK

UPTOWN LOFTS STRUCTURAL THERMAL BRIDGE ISSUE: SEPARATION TO UNCONDITIONED PARKING DECK

		Mechanical Pr	operties	
Tensile Strength	PSI		ASTM D638	9,400
Flexural Strength	PSI		ASTM D790	22,300
Compressive Strength	PSI		ASTM D695	38,900
Compressive Modulus	PS1		ASTM D695	1,450,377
Shear Strength	PSI		ASTM D732	13,400
Thickness	in			1/4", 1/2", 1"
		Flame Resis	tance	
Oxygen Index	%O2		ASTM D2863	21.8
		Thermal Pro	perties	
Coefficient of Thermal Expansion		in/in/ºCx10*	ASTM D696	2.2
Thermal Conductivity		BTU/Hr/ft9/in/%F	ASTM C177	1.8**
		W/m*K		0.259
**Reference: Thermal Conduct	wity of Steel	BTU/Hoft/In/%		374.5

Additional Products for Building & Construction





STRUCTURAL THERMAL BREAKS

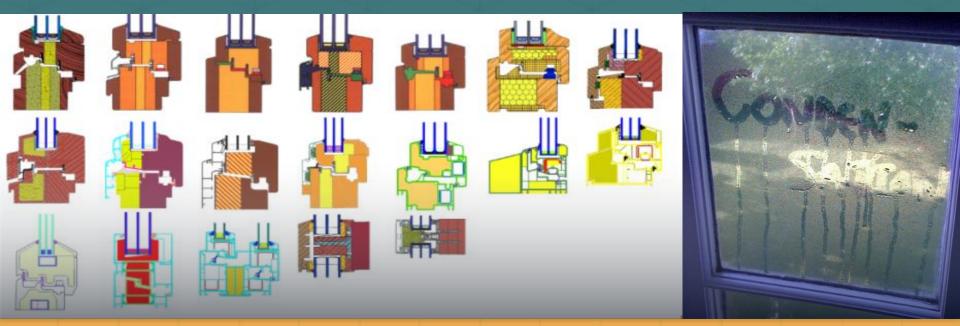
AIR-TIGHTNESS BENEFITS

Energy benefits:

Minimizes energy losses in conjunction with ventilation
Minimizes latent loads in conjunction with ventilation

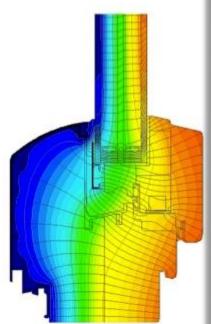
Hygrothermal benefits:

- Minimizes moisture traveling into the wall through infiltration or exfiltration
- Minimizes condensation risk in components
- Increases durability of assemblies


Source: www.prosoco.com/r-guard

EASE OF CONTINUOU SPRAYA PLIED FOR

©2017 Passive House Institute US | PHIUS 16


RRIERS

HIGH PERFORMANCE WINDOWS FOR BETTER COMFORT

IMPROVING WINDOW PERFORMANCE MINIMIZES HEAT LOSS/GAIN, ASSURES THERMAL COMFORT, ELIMINATES CONDENSATION

DALING IN WINDOW PERFORMANCE BY CLIMATE

WUFI® Passive

Product name:	Alpen Cas	ement 07	3			Center-	of-glass prop	perties
ASHRAE/IECC /DOE North American Climate Zone	South- facing	North, East, West - facing	Pa	PHIUS ssive House Institute			Alpen _073	
			Whole-wi	ndow installed	d U-value		Ucog-Value	
Climate specific I	recommen	dations:	W/m2K	BTU/hr.ft2.F		SHGC	W/m2K	BTU/h
8			0.82	0.14		0.469	0.478	
7			0.82	0.15		0.469	0.482	
6			0.83	0.15		0.469	0.489	
5			0.83	0.15	_	-		
4			0.83	0.15	Find &	Compare	Windov	VS
Marine North			0.84	0.15	PHILIS Cer	tified Data for Wi	ndows · PHILIS	S Certifie
Marine South	\checkmark		0.84	0.15				5 Ocranica
3	\checkmark		0.84	0.15		manufacturers	:	
2 West			0.83	0.15	Alpen Cold Chain			
2 East			0.83	0.15	HH	Frame Mat	terial (FM)	
					Intus	FG - Fibergl		
Alpen Casement	073		FR	RAME	Kolbe	VL - Vinyl		
		Fram	e height	U-fra	Marvin	WD - Wood		
		mm	in	W/m2K	Thermotech		ticized Polyvinyl Chlo	oride (uPVC)
	Head	72	2.82	1.12	Veka	AI - Aluminu	m um Clad Wood	
	Sill	72	2.82	1.12	Wasco	Avv - Alumin	um ciau wood	

2.82

2.82

72

72

Left

Right

Valid through February 2016

WS

US Certified Window Data for Designers & Builders

BTU/hr.ft2.F

0.084

0.085

0.08

		Psi-Opaque	Grade (PO)	
Chain Frame Material (FM)		Frame-spacer grade is based on combining the frame heat transmission and the edge-of glass effect into a single linear heat loss coefficient. This provides a basis for		
	FG - Fiberglass	comparison of frames of different widths and diffe frame-spacer combinations.		
	VL - Vinyl	PO	Frame-Spacer	
n	WD - Wood	[Btu/h.ft.F]	Grade	
otech	PC - Unplasticized Polyvinyl Chloride (uPVC)	<=0.065	A+	
	AI - Aluminum	<=0.110	A+	
0	AW - Aluminum Clad Wood	<=0.155	В	
		<=0.200	с	
		>0.200	D	

Downloadable datasheets (.pdf) and therm files (.zip) for each listing

Recommendations by climate zone

Climate zone map

1.12

1.12

CURTAIN WALLS & HIGH PERFORMANCE PANEL/ZATIC

Source: Schüco

	system width	U _f -value
THERM ⁺ A-V	50 / 56 mm	up to 0.85 W/(m²K)
THERM ⁺ S-I	50 / 56 mm	up to 0.88 W/(m²K)
THERM+ H-V	50 / 56 / 76 mm	up to 0.87 W/(m²K)
THERM ⁺ H-I	50 / 56 / 76 mm HC Training ©2	up to 0.88 W/(m ² K) 2015 Passive House Institute US Module 6

IBP

PASSIVE BUILDING **IS PART OF THE SOLUTION**

Katrin Klingenberg, Executive Director www.PHIUS.org/www.PHAUS.org

