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2016 – 17 Project Accomplishments 

Broad Project Objectives: Investigate the design of market mechanisms and 
optimization/control methods to facilitate the deep grid-integration of distributed 
and renewable energy resources 
 

Market Design 
•  Wholesale market mechanism for energy storage integration and cost recovery [1] 

•  Rate design for EV charging services [2] 
 

Control and Optimization Methods 
•  Design of control architectures/algorithms to coordinate DERs at scale [3] 
 

Testbed Development (Ithaca, NY) (12,400 participating customers) 
•  Cornell partnership with Avangrid to develop Energy Smart Community (ESC) 
•  A distribution system platform to test novel rate structures and control 

technologies 
 
[1] “Financial Storage Rights in Electric Power Networks,” Journal Regulatory Economics, 2017 
[2] “Deadline Differentiated Pricing of Deferrable Electric Loads,” IEEE Trans. Smart Grid, 2017 
[3] “Decentralized Stochastic Control of DERs”, IEEE Trans. Power Systems, 2017 
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The Rise of DERs 
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The power grid in midst of profound transformation with the rise of 
distributed energy resources (DERs) at the ‘grid edge’ 
 
 
                                                           
 
 
 
 
 
Utopian vision… 
•  Clean, cheap, renewable energy produced and consumed locally 
•  Increased grid reliability and resilience  
•  Role of bulk transmission system diminishes… 
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What DERs? 
•  Residential solar + storage 
•  Plug-in EVs 
•  Community solar + storage 
•  Smart appliances  



The Rise of DERs (the Reality) 
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The power grid in midst of profound transformation with the rise of 
distributed energy resources (DERs) at the ‘grid edge’ 
 
 
 
 
 
 
 
 
The uncoordinated proliferation and operation of DERs will manifest in: 
•  Rapid and large voltage fluctuations (reduces end-use power quality) 
•  Distribution feeder congestion (e.g., distribution lines, transformers, voltage limits) 
•  Increased power distribution losses (20-30%) 
•  Increased variability in net-load profiles (problematic for the ISO) 
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The Rise of DERs (the Reality) 
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The power grid in midst of profound transformation with the rise of 
distributed energy resources (DERs) at the ‘grid edge’ 
 
 
 
 
 
 
 
 
Traditional techniques for voltage regulation are limited… 
•  On load tap changing (OLTC) transformers 
•  Shunt capacitor banks 
•  Static VAR compensators (SVC) 
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Real-time Coordination of DERs 
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The power grid in midst of profound transformation with the rise of 
distributed energy resources (DERs) at the ‘grid edge’ 
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Why not control DERs instead? 
 

•  E.g., use latent reactive power capacity of PV/storage 
inverters to regulate voltage (in real-time) 

 

•  Gives rise to a large-scale optimal control problems… 
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Real-time Coordination of DERs 
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The power grid in midst of profound transformation with the rise of 
distributed energy resources (DERs) at the ‘grid edge’ 
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Why not control DERs instead? 
 

•  E.g., use latent reactive power capacity of PV/storage 
inverters to regulate voltage (in real-time) 

 

•  Gives rise to a large-scale optimal control problems… 
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The Value of Coordinating DERs 
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The dynamic control of active/reactive power injections of DERs can support: 
•  Dynamic voltage regulation  
•  Reduction of power distribution losses 
•  Local constraint relief, and transmission congestion relief 
•  Local balancing of variable renewable power 
 

Control design criteria: 
1.  Scalability: 104 to 106 points of actuation; control updated every ≈1 second  
2.  Robustness: guaranteed satisfaction of network and individual DER constraints at 

all times despite a priori uncertainty in solar/load profiles and network parameters 
3.  Performance: a priori performance guarantees, e.g., power loss minimization 
 
Recent NREL report pointing to an apparent lack of effective control methods capable 
of  “integrating [PV] inverter controls with control of other DERs or the management 
of uncertainty from intermittent generation” [NREL, ADMS Program Report, Aug. 
2016].  
 



Proposed DER Control Architecture 
Fast timescale – Decentralized real-time control of DERs, ui = Ki(yi) 
•  Each DER executes control action every 1-2 seconds  
•  yi, = local measurements at ith DER (battery SoC, load, solar power) 
•  ui, = local control input to ith DER (inverter active and reactive power) 
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K1 Kn 

Power Distribution System 

…. u1 y1 un yn 

d1 dn Fast decentralized 
control loops 



Proposed DER Control Architecture 
Fast timescale – Decentralized real-time control of DERs, ui = Ki(yi) 
•  Each DER executes control action every 1-2 seconds  
•  yi, = local measurements at ith DER (battery SoC, load, solar power) 
•  ui, = local control input to ith DER (inverter active and reactive power) 
 

Slow timescale – Centralized opt. of decentralized DER controllers (K1,….,Kn) 
•  Can be updated on hourly to daily timescales (by the utility) 
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K1 Kn 

Power Distribution System 

Distribution System Operator 

…. u1 y1 un yn 

d1 dn 

Slow centralized 
optimization loop 

Fast decentralized 
control loops 



High-Level Problem Formulation 

Time is assumed discrete, t = 0,1,….,T  (≈1 sec. time intervals) 
 

Cost Criterion: minimize expected cumulative power losses 
 

Physical system constraints:  
•  Nodal voltage magnitude limits 
•  Line thermal limits 
•  DER capacity constraints (e.g., energy storage capacity, inverter capacity) 
•  Constraints must be respected at all times, and for ‘all’ possible disturbance 

realizations (i.e., almost surely) 
 

Controller information constraints: 
•  Causal information structure 
•  Decentralized information structure – each DER has access only to its nodal 

(P,Q,V) measurements (e.g., local load and solar power) 
 

… amounts to a constrained decentralized stochastic control problem 
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Technical Remarks and Results 

The decentralized stochastic control problem is computationally intractable… 
•  Nonconvex (e.g., due to need for ‘signaling’ between controllers) 
•  Infinite-dimensional (e.g., due to ‘second-guessing’ phenomenon) 
 

Assumptions we make… 
1.  Balanced radial network; linearized branch flow model [Baran & Wu 1989] 
2.  Constant power loads 
3.  Disturbance process has known 2nd moment and compact polyhedral support    

(no other distributional information required) 
 

Summary of Results:  [W. Lin & E. Bitar “Decentralized Stochastic Control of 
Distributed Energy Resources”, IEEE Trans. Power Systems, 2017] 
 Approach to decentralized control design via convex programming 
•  A method to calculate a (feasible) affine disturbance-feedback decentralized 

control policies via a finite-dimensional quadratic program (QP) 
•  A method to a calculate performance bounds via the solution of another finite-

dimensional QP  
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Case Study: IEEE 123-Node Feeder  
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=  PV inverter nodes 
 

System Features 
 

•  123-node feeder (IEEE test-case) 
 

•  Distributed solar 
-  Tot. active power cap. = 12 MW 
-  Tot. apparent power cap. = 15 MW   
 

•  Voltage magnitude constraints 
-  Upper limit = 1.05 p.u. 
-  Lower limit = 0.95 p.u. 
 

•  Controller Timescales 

-  Control law updated every 30 min. 
-  Real-time control every 2 seconds. 

 
•  A numerical analysis of decentralized control algorithms developed in:    
 

[W. Lin & E. Bitar “Decentralized Stochastic Control of Distributed Energy 
Resources”, IEEE Trans. Power Systems, 2017] 
 



Network Voltage Profiles 
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Uncontrolled Voltages 

Controller objective (A): minimize voltage mag. deviations from 1 p.u. 
 



Network Voltage Profiles 

•  A voltage profile realization under proposed DER controllers 
•  DER controllers eliminate nearly all voltage fluctuations 
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Uncontrolled Voltages Controlled Voltages 

Controller objective (A): minimize voltage mag. deviations from 1 p.u. 
 



Network Voltage Profiles 

•  DER controllers (by design) do not fully flatten voltage rise/drop under power 
loss minimization objective 

•  DER controllers limit reactive power injections to reduce active power losses 
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Uncontrolled Voltages Controlled Voltages 

Controller objective (B): minimize cumulative active power losses 
 



Voltage Mag. Confidence Intervals 

•  Empirical confidence intervals based on 30,000 independent samples. 
•  Positive probability of both under-voltage and over-voltage. 
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Voltage Mag. Confidence Intervals 

•  Voltage profile regulated close 1 p.u. for all disturbance realizations 
•  Little variance  
•  Guaranteed satisfaction of voltage magnitude constraints. 
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Controller objective (A): minimize voltage mag. deviations from 1 p.u. 
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Voltage Mag. Constraint Tightening 

•  Guaranteed satisfaction of voltage magnitude constraints. 

6/29/17	 DOE/OE	Transmission	Reliability	Program	 E.	Bitar	(Cornell	Univ.)	

Controller objective (B): minimize cumulative active power losses 
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Voltage Mag. Constraint Tightening 

•  Guaranteed satisfaction of (tightened) voltage magnitude constraints. 
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Controller objective (B): minimize cumulative active power losses 
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Voltage Mag. Constraint Tightening 

•  Guaranteed satisfaction of (tightened) voltage magnitude constraints. 
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Controller objective (B): minimize cumulative active power losses 
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Voltage Mag. Constraint Tightening 
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Controller objective (B): minimize cumulative active power losses 

Confidence Intervals for Controlled Voltage Profiles  (@ Node 114) 
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•  Guaranteed satisfaction of (tightened) voltage magnitude constraints. 



Energy Smart Community (ESC) Test-bed 
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A ‘living laboratory’ being 
developed in partnership with 
Avangrid in Ithaca, NY 
 

•  12,400 Customers 
•  4 Substations 
•  15 Circuits 

ESC Objectives: 
 

1.  Test and prove the functionality of 
distribution system platform technologies 

 

2.  Develop new capabilities and processes 
that support the evolution of an 
intelligent Distributed System Platform 
that integrates:  
•  Real-time operations 
•  Planning 
•  Market functions 

 

3.  Create and test new retail rate designs 
that support system efficiency 

Cornell Team 
 

•  S.K. Anderson, E. Cowen, R. Daziano,   
T. Mount, R.E. Schuler, W. Schulze,     
R. Stedman, R.J. Thomas 

ESC footprint 



2016 – ‘17 Project Publications (Journal) 
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Journal 
•  D.M. Alvarez & E.B. (2017). “Financial storage rights in electric power networks,” Journal 

of Regulatory Economics, Accepted (online). 

•  W. Lin & E.B. (2017). “Decentralized stochastic control of distributed energy resources,” 
IEEE Transactions on Power Systems, Accepted (online). 

•  E.B. & Y. Xu (2017). “Deadline differentiated pricing of deferrable electric loads,” ” IEEE 
Transactions on Smart Grid, 8 (1), 13-25. 

•  K. Khezeli & E. B. (2017). “Risk-sensitive learning and pricing for demand response,” 
IEEE Transactions on Smart Grid, Accepted (online). 



2016 – ‘17 Project Publications (Conference) 
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Conference  
•  W. Lin & E.B. (2016). “Decentralized control of distributed energy resources in radial 

distribution systems,” IEEE Smart Grid and Comm. Conference (SmartGridComm). 

•  W. Lin & E.B. (2016). “Performance bounds for robust decentralized control,” IEEE 
American Control Conference (ACC). 

•  K. Khezeli & E.B. (2016). “Data-driven pricing of demand response,” IEEE Smart Grid 
and Comm. Conference (SmartGridComm). 

•  K. Khezeli, W. Lin, & E.B. (2017). “Learning to buy (and sell) demand response,” IFAC 
World Congress, To appear. 

•  R. Louca & E.B. (2016). “A hierarchy of polyhedral approximations of robust semidefinite 
programs,” IEEE Conference on Decision and Control (CDC). 

•  R. Louca & E.B. (2016). “Stochastic AC optimal power flow with affine recourse,” IEEE 
Conference on Decision and Control (CDC). 

•  S.H. Tseng, E.B., & A. Tang (2016). “Random convex approximations of ambiguous 
chance constrained programs,” IEEE Conference on Decision and Control (CDC). 

•  W. Lin & E.B. (2016). “Parameterized Supply Function Equilibrium in Power Networks,” 
IEEE Conference on Decision and Control (CDC). 
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Representative PV Active Power Sample Paths 
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Representative PV Active Power Uncertainty Sets 
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