DOE/OE Transmission Reliability Program

DE-OE0000842 Multi-Stage and Multi-Timescale Robust Co-Optimization Planning for Reliable and Sustainable Power Systems

Lei Wu

Associate Professor, Clarkson University Iwu@Clarkson.edu June 14, 2017 Washington, DC

Outline

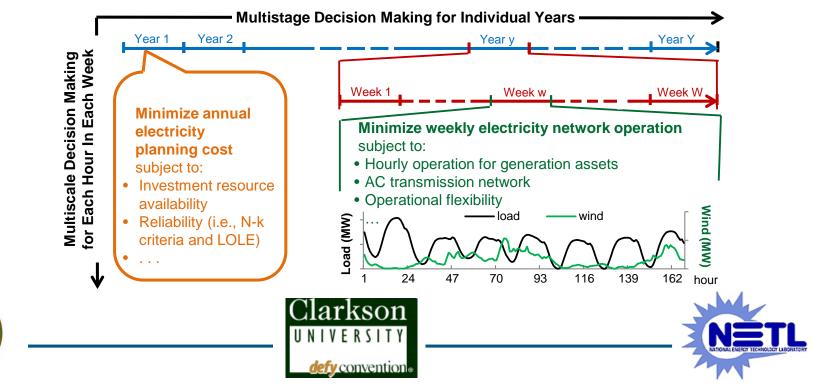
- Overall Project Objective
- Looking Back (October 2016-June 2017)
 - Major accomplishments
 - Deliverables and remaining schedule for activities to be completed under FY16 funding
 - A list of accepted publications
- Looking Forward
 - Outline planned activities and schedule

Project Overview

- Period of Performance: October 1, 2016 September 30, 2019
- Program Manager: Phil Overholt
- Project Officer: Alicia R. Dalton-Tingler
- Principal Investigator: Lei Wu
- Subrecipient
 - Bo Zeng, University of Pittsburgh
 - Jianhui Wang, Southern Methodist University
- Industry Partners
 - ISO-NE
 - PJM
 - MISO
 - New York State Smart Grid Consortium

Background

- Long-term power system planning aims at optimizing asset utilization by investing in a proper mix of generation and transmission technologies/capacities to supply the future electrical load growth.
 - Focus on environmental sustainability, energy reliability, and economic well-being over multiple years
 - Mitigate multiple timescale risks and uncertainties, ranging from longterm policy/technology changes to short-term operation dynamics
 - Coordinate long-term reliability and short-term flexibility
 - Address computational complexity of practical-scale power systems, especially considering hourly chronological operation details and nonlinear characteristics of the alternating current (AC) transmission network.



Overall Project Objective

 Develop Multi-stage and Multi-timescale robust Co-Optimization Planning to determine a proper mix of generation and transmission technologies/ capacities as well as novel non-wires alternatives for supplying the future electrical load growth.

5

Overall Project Objective

- Advanced features for the modeling and simulation
 - Risks and uncertainties related to the time, location, and type of additional generation technologies
 - Annual, seasonal, and hourly variation of renewable energy sources
 - Integrated long-term reliable planning and short-term economic operation
 - AC transmission network
 - Various environmental considerations
- Innovative solution methodologies
 - Dynamic transmission network reduction
 - Tighter convex approximation for AC power flow
 - Integrated decomposition approaches
 - Distributed computation methods

Look Back (October 2016-June 2017)

- Major accomplishments during the past year
 - The Kickoff Meeting was held on March 3rd, 2017.
 - The **Project Management Plan** was finalized on March 13th, 2017.
 - Deterministic multi-stage and multi-timescale generation and transmission co-optimization planning model with AC constraints
 - Simultaneously study network configurations along with the detailed characterization of their functionalities with AC power flow representation.
 - Integrating long-term reliability and short-term flexibility in a single analytical framework.
 - Subcontractors from Southern Methodist University and University of Pittsburgh, and collaborators from China and Denmark on optimal AC power flow, wind-storage coordination, microgrid, and advanced optimization algorithms to support large-scale system planning.

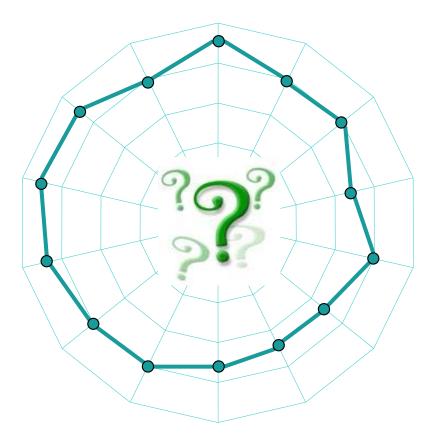
Look Back (October 2016-June 2017)

- Deliverables and remaining schedule for activities to be completed under FY16 funding
 - AC constrained co-optimization planning model with environmental constraints
 - Investment cost of candidate lines depends on environmental factors such as terrain, climate, and certain environmental protection goals.
 - Exploring **optimal routes of candidate lines** according to actual environmental factors and power system reliability requirements.
 - Incorporating spatial transmission network planning into the proposed co-optimization planning model to simultaneously ensure feasibility of line paths and reliability of power systems.
 - Annual One Deliverables: programmatic metrics, publications, and presentations

Look Back (October 2016-June 2017)

- A list of accepted publications and presentations
 - [J3] Z. Bao, Q. Zhou, L. Wu, Z. Yang, and J. Zhang, "Optimal capacity planning of MG with multi-energy coordinated scheduling under uncertainties considered," *IET Generation, Transmission & Distribution*, 2017.
 - [J2] H. Ding, P. Pinson, Z. Hu, J. Wang, and Y. Song, "Optimal offering and operating strategies for a large wind-storage system as a price maker", *IEEE Trans. Power Systems*, 2017.
 - [J1] W. Wei, J. Wang, N. Li, and S. Mei, "Optimal power flow of radial networks and its variations: a sequential convex optimization approach," *IEEE Trans. Smart Grid*, 2017.
 - [P1] L. Wu and B. Zeng, "Multi-Stage and Multi-Timescale Robust Co-Optimization Planning for Reliable and Sustainable Power Systems," *INFORMS Annual Meeting*, 2017.

Looking Forward (July 2017- June 2018)


- Planned activities and schedule for July 2017- June 2018
 - AC-constrained co-optimization planning model with risks and uncertainties – November 2017
 - Considering risks and uncertainties related to as load, renewable energy, and policy/technology changes, as well as spatiotemporal correlations among generator and transmission line outages
 - Multi-area coordinated planning model March 2018
 - Achieve overall reliability and economic efficiency of the interconnect electricity infrastructure with the growing interconnection of regional electricity networks and large-scale integration of renewable energy
 - Enhancement of computational methods March 2018
 - Design and implement efficient computation methods using three strategies of approximation, decomposition, and distributed computation
 - Implementation June 2018

Thank you!

11