DOE/OE Transmission Reliability Program

Dynamic Reserve Policies for Market Management Systems Project Completion Report

Ph.D. Candidate Nikita G. Singhal

Arizona State University June 14, 2017 Washington, D.C.

- Overall Project Objective, Scope
- Looking Back
- Need for Stochastic-Oriented Processes
- Looking Forward: Industry Practices, Movement
- Proposed Methodology: Enhanced Reserve Policies for Systems with Stochastic Resources
- Numerical Results: 2383-bus Polish Test System
- Concluding Remarks, Looking Forward

Overall Project Objective, Scope

- Create smart, well-designed reserve policies for reserve and ramp products
- Design a multi-stage framework accounting for:
 - A look-ahead stage prior to day-ahead (DA) market model
 - A DA market security-constrained unit commitment (SCUC) model
 - Adjustment period modifications (i.e., out-of-market corrections, OMCs)
- Develop data-mining techniques to determine reserve policies
- Compare and contrast developed policies with stochastic programming approaches

- Overall Project Objective, Scope
- Looking Back
- Need for Stochastic-Oriented Processes
- Looking Forward: Industry Practices, Movement
- Proposed Methodology: Enhanced Reserve Policies for Systems with Stochastic Resources
- Numerical Results: 2383-bus Polish Test System
- Concluding Remarks, Looking Forward

Looking Back

• Conference Publications/Presentations:

- [1] N. Li, N. G. Singhal, and K. W. Hedman, "An enhanced security-constrained unit commitment model with reserve response set policies," in *Proc. 50th Hawaii Int. Conf. on System Sciences*, pp. 3065-3074, Jan. 2017.
- [2] S. Zhang, N. G. Singhal, K. W. Hedman, V. Vital, and J. Zhang, "An evaluation of algorithms to solve for do-not-exceed limits for renewable resources," in *Proc. 48th Hawaii Int. Conf. on System Sciences*, pp. 2567-2576, Jan. 2015.

• Journal:

- [1] N. G. Singhal, N. Li, and K. W. Hedman, "A data-driven reserve response set policy for power systems with stochastic resources," *IEEE Trans. Sustain. Energy*, under review.
- [2] N. G. Singhal, N. Li, and K. W. Hedman, "A reserve response set model for systems with stochastic resources," *IEEE Trans. Power Syst.*, under review.

Looking Back

- Remaining Activities:
 - Finalization of analysis regarding market implications of proposed methodology (planned *journal* submission)
 - Final reporting
 - Documentation, dissemination

• Related Work / Industry Outreach and Presentations

- Leveraged separate ARPA-E project on related topic to engage with industry:
- MISO November 2016
- ERCOT January 2017
- PG&E April 2017
- SPP May 2017

- Overall Project Objective, Scope
- Looking Back
- Need for Stochastic-Oriented Processes
- Looking Forward: Industry Practices, Movement
- Proposed Methodology: Enhanced Reserve Policies for Systems with Stochastic Resources
- Numerical Results: 2383-bus Polish Test System
- Concluding Remarks, Looking Forward

Need for Stochastic-Oriented Processes

- Existing uncertainties
 - Resource forced outages (contingencies)
 - Renewable resources (wind, solar)
 - Distributed energy resources
- Combining uncertainty modeling with resource scheduling
- Stochastic programming
 - Computational complexity
 - Market barriers

Increasing uncertainties and distributed resources call for stochasticoriented processes and decision support tools – MISO

- Overall Project Objective, Scope
- Looking Back
- Need for Stochastic-Oriented Processes
- Looking Forward: Industry Practices, Movement
- Proposed Methodology: Enhanced Reserve Policies for Systems with Stochastic Resources
- Numerical Results: 2383-bus Polish Test System
- Concluding Remarks, Looking Forward

Industry Practices, Movement

• Existing market models

- Based on deterministic approaches that inadequately address uncertainty and variability
- Numerous approximations to address the underlying stochastic program

Industry response, movement

- MISO: Zonal reserve deliverability constraints
- CAISO: Generator contingency and remedial action scheme modeling (*proposed*), flexible ramping product
- ISO-NE: Do-not-exceed (DNE) limits
- EPRI in collaboration with CAISO: Dynamic reserve procurement
- Long-standing practice: Participation factor modeling in real-time contingency analysis (RTCA)

Long-Standing Practice: Transmission Contingencies

Post-contingency transmission constraints for each modeled transmission contingency case, *c*

•No second-stage recourse decisions

MISO: Zonal Reserve Deliverability Constraints

MISO utilizes post-contingency transmission constraints to determine their zonal reserve requirements [1]

[1] Y. Chen, P. Gribik, and J. Gardner, "Incorporating post zonal reserve deployment transmission constraints into energy and ancillary service co-optimization," *IEEE Trans. Power Syst.*, vol. 29, no. 2, pp. 537-549, Mar. 2014.

MISO: Zonal Reserve Deliverability Constraints

Post reserve deployment transmission constraint [1]

[1] Y. Chen, P. Gribik, and J. Gardner, "Incorporating post zonal reserve deployment transmission constraints into energy and ancillary service co-optimization," *IEEE Trans. Power Syst.*, vol. 29, no. 2, pp. 537-549, Mar. 2014.

CAISO: Generator Contingency and Remedial Action Scheme (RAS) Modeling

- CAISO intends to update its market models to include [2]:
 - Generator contingencies explicitly and pre-defined RAS
 - Combined transmission and generator contingencies explicitly
- Post-contingency transmission constraints for each modeled generator contingency case [2]
 - Explicit representation of generator contingencies
 - No second-stage recourse decisions

[2] CAISO, "Generator contingency and remedial action scheme modeling," Mar. 2017 [Online]. Available: http://www.caiso.com/Documents/RevisedStrawProposal-GeneratorContingencyRemedialActionScheme.pdf

CAISO: Generator Contingency and Remedial Action Scheme (RAS) Modeling

Post-contingency transmission constraints for each modeled generator contingency case [2]

[2] CAISO, "Generator contingency and remedial action scheme modeling," Mar. 2017 [Online]. Available: http://www.caiso.com/Documents/RevisedStrawProposal-GeneratorContingencyRemedialActionScheme.pdf

15

- Overall Project Objective, Scope
- Looking Back
- Need for Stochastic-Oriented Processes
- Looking Forward: Industry Practices, Movement
- Proposed Methodology: Enhanced Reserve Policies for Systems with Stochastic Resources
- Numerical Results: 2383-bus Polish Test System
- Concluding Remarks, Looking Forward

Proposed Methodology

• Proposed gen contingency (or renewable resource deviation) modeling:

$$-\overline{F}_{l}^{RateC} \leq F_{lt} - P_{ct}PTDF_{n(c),l} + \sum_{g:g \neq c} r_{gt} \overline{\beta}_{g,l,t}^{c} \leq \overline{F}_{l}^{RateC}$$
Pre-contingency Change in flow due to loss of generator c Change in flow due to reserve response

- Reserve response factors: interpreted as a factor that defines the average impact of a responsive generator; weighted PTDF
- Again, no recourse decisions

Determination of Reserve Response Factors

- Data mining model: Support Vector Machines for regression and function estimation (or Support Vector Regression with linear kernels)
 - Target: post-contingency flow due to activated reserve
 - Attributes: activated reserve quantities from responsive generators
 - Instances: net load scenarios (uncertainty); historical data or generate hypothetical data
- Goal: determine a regression function that approximates the post-contingency flows due to nodal reserve deployment
- Test the obtained reserve response factors $(\beta_{g,l,t}^c)$ against various operational states (*out-of-sample* testing)

18

Simulation Setup

- The method (offline) uses a data-mining algorithm
 - Offers augmentation with minimal added computational burden
- The modified SCUC formulation enhances reserve determination (both quantity and location)
 - Improves reserve deliverability on critical links
 - Approximately captures uncertainty (between scenarios)

Out-of-Market Corrections (OMC)

- Approximate market models, stochastic programs (with limited scenarios): produce unreliable solutions
 - Out-of-sample testing: may have load shedding
- Often, a value of lost load (VOLL) is assumed to estimate the cost of load shedding
 - Results: subjective
- Our analysis simulates dispatch operator out-of-market correction procedures to better estimate actual costs
 - All solutions are *reliable*, no load shedding
- Other OMC terms: uneconomic adjustments; supplement dispatch; out-of-sequence/out-of-merit dispatch; reserve disqualification; reserve down-flags

- Overall Project Objective, Scope
- Looking Back
- Need for Stochastic-Oriented Processes
- Looking Forward: Industry Practices, Movement
- Proposed Methodology: Enhanced Reserve Policies for Systems with Stochastic Resources
- Numerical Results: 2383-bus Polish Test System
- Concluding Remarks, Looking Forward

Comparison: Base Case Reserve Model

- A zonal reserve model
 - Reserve sharing between zones: ' α ' policy defined in relation to the available headroom
- **Illustration:** Pre- and post-contingency limits: 50 MW and 100 MW

Case 1 (liberal policy): $\alpha = 1$

Case 2 (conservative policy): $\alpha = 0.75$

- Comparison of the proposed reserve model with:
 - 1) Single-zone reserve model (myopic)
 - 2) Reserve model with varying reserve sharing (α) policies
 - 3) Extensive-form stochastic unit commitment
- Four lines formulated with the post-contingency transmission constraint

Market SCUC and OMC Costs

Percent Cost Savings

- Bubble chart comparing the cost of the final *N*-1 reliable solution against the expected sum of security violations for the DA market SCUC solution for each scenario
 - Size of the bubble represents the number of cases with violations for the corresponding scenario
- Computational time comparison

- Comparison with respect to two additional reliability metrics
 - Max viol: maximum reported (or worst-case) security violation
 - ∑viol: actual sum of security violations
- Average number of additional units that are turned to obtain an N-1 reliable solution

Iniversity

• Tested using net load scenarios from *different* test days

Table 1. Average Results across Net Load Scenarios from Second Test Day

Approach	Myopic	<i>α</i> =1.0	<i>α</i> =0.95	<i>α</i> =0.90	<i>α</i> =0.85	Proposed	Extsv.
Final Cost (M\$)	13.76	13.87	13.85	13.83	14.13	13.62	11.43
DA SCUC Solution							
SCUC Cost (M\$)	10.69	10.83	10.93	11.07	11.66	11.91	11.43
Time (s)	97	111	103	106	115	112	911
Contingency Analysis							
E[viol] (MWh)	20.51	11.86	9.91	8.63	7.37	1.84	0
# viol	100	68	60	51	45	43	0
Out-of-Market Correction (N-1 Reliable Solution)							
OMC Cost (M\$)	3.07	3.04	2.92	2.76	2.47	1.71	-

E[viol] – Expected sum of security violations (MWh)# viol – Number of cases with security violations

Max viol – Worst case security violation (MW) \sum **viol** – Actual sum of security violations (MWh)

- Overall Project Objective, Scope
- Looking Back
- Need for Stochastic-Oriented Processes
- Looking Forward: Industry Practices, Movement
- Proposed Methodology: Enhanced Reserve Policies for Systems with Stochastic Resources
- Numerical Results: 2383-bus Polish Test System
- Concluding Remarks, Looking Forward

Concluding Remarks, Looking Forward

- Traditional modeling of reserve and ramp products:
 - Inadequate account of pre- and post-contingency congestion aptly
 - Consequence:
 - Over-procurement of ancillary services (market inefficiency, market distortion)
 - Or required out-of-market corrections / discretionary operator modifications (expensive, market transparency issues, market distortion)
 - Consequences grow with increased reliance on stochastic resources

• Proposed approach:

- Designed to avoid practical (market, scalability) barriers while still capturing most of the potential cost savings
- Most applicable to existing practices, least disruptive
- Successful in finding solutions that capture congestion reasonably
- Requires fewer OMCs; improves market transparency and pricing

Concluding Remarks, Looking Forward

- Via communication with Jim Price on CAISO's recently proposed generator contingency modeling changes:
 - Enhanced reserve modeling and ramp products... capture majority of the savings... compared to a market design overhaul that implements two-stage stochastic programs
- Path forward for industry: dynamic reserve (and ramp) products/policies
 - CAISO's recent proposed changes, MISO's reserve deliverability constraints
- Continue pursuit through ARPA-E NODES project and partnerships with industry (PJM, looking for others), software developers (Nexant Inc.), and DOE (Sandia National Laboratories)

Questions

Thank you.

Comparison: Base Case Reserve Model

- $\sum_{k \in \mathbb{Z}} \tilde{r}_{kt}^c \ge P_{ct} + r_{ct}, \quad \forall c \in G, t \in T$
- $\tilde{r}_{kt}^c \leq \sum_{g \in G(k)} r_{gt}$, $\forall c \in G, k \in Z, t \in T$
- Reserve sharing between zones: also limited by,
 - $S_{kt}^{z(c)} = \overline{\alpha} \left(\overline{F}_{l_{k-z(c)}}^{RateC} \right) \pm F_{l_{k-z(c)}t}, \qquad \forall c \in G, k \in Z, t \in T$

k: index for zones; z(c): index for contingency zone c

Case 1 (liberal policy): $\alpha = 1$

 $= 1 \times 100 - 50 = 50 \text{ MW}$

Case 2 (conservative policy): $\alpha = 0.75$

 $= 0.75 \times 100 - 50 = 25$ MW

Reserve sharing limit from zone 1 to zone 2:

Ν

Proposed Reserve Model

• Proposed reserve model

$$\begin{split} \sum_{g} r_{gt} &\geq P_{gt} + r_{gt} & \forall g \in G, t \in T \\ \sum_{g} r_{gt} &\geq \eta \% \sum_{n} D_{nt} & \forall t \in T \\ \sum_{k \in Z} \tilde{r}_{kt}^{c} &\geq P_{ct} + r_{ct} & \forall c \in G, t \in T \\ \tilde{r}_{kt}^{c} &\leq \sum_{g \in G^{k}} r_{gt} & \forall c \in G, k \in Z, t \in T \\ \tilde{r}_{kt}^{c} &\leq F_{l_{k-z(c)}}^{RateC} \pm F_{lt_{k-z(c)}} & \forall c \in G^{NC}, k \in Z, t \in T \\ -F_{l}^{RateC} &\leq F_{lt} - P_{ct} PTDF_{n(c),l} + \sum_{g:g \neq c} r_{gt} \beta_{g,l,t}^{c} \leq F_{l}^{RateC} \\ \forall c \in G^{c}, l \in L^{c}, t \in T. \end{split}$$

k: index for zones; z(c): index for contingency zone c

Tested using net load scenarios from *different* test days

Table 1. Average Results across Net Load Scenarios from Second Test Day

Approach	Myopic	<i>α</i> =1.0	<i>α</i> =0.95	<i>α</i> =0.90	<i>α</i> =0.85	Proposed	Extsv.		
Final Cost (M\$)	13.76	13.87	13.85	13.83	14.13	13.62	11.43		
DA SCUC Solution									
SCUC Cost (M\$)	10.69	10.83	10.93	11.07	11.66	11.91	11.43		
Time (s)	97	111	103	106	115	112	911		
# Online Units	244	243	244	244	250	247	253		
Contingency Analysis									
E[viol] (MWh)	20.51	11.86	9.91	8.63	7.37	1.84	0		
# viol	100	68	60	51	45	43	0		
Max viol (MW)	175	132	131	133	129	66	0		
∑viol (MWh)	7,450	4,578	3,901	3,386	2,967	644	0		
Out-of-Market Correction (N-1 Reliable Solution)									
OMC Cost (M\$)	3.07	3.04	2.92	2.76	2.47	1.71	-		
# Online Units	289	288	288	288	286	282	-		

E[viol] – Expected sum of security violations (MWh) **# viol** – Number of cases with security violations $\label{eq:max_viol} \begin{array}{l} \textbf{Max viol} - \textbf{W} orst case security violation (MW) \\ \sum \textbf{viol} - \textbf{Actual sum of security violations (MWh)} \end{array}$

Tested using net load scenarios from *different* test days

Table 2. Average Results across Net Load Scenarios from Third Test Day

Approach	Myopic	<i>α</i> =1.0	<i>α</i> =0.95	<i>α</i> =0.90	<i>α</i> =0.85	Proposed	Extsv.		
Final Cost (M\$)	13.67	13.91	13.92	13.90	14.08	13.56	11.83		
DA SCUC Solution									
SCUC Cost (M\$)	10.63	10.85	11.04	11.29	12.15	11.96	11.83		
Time (s)	96	113	109	108	112	121	815		
# Online Units	244	244	245	249	268	249	263		
Contingency Analysis									
E[viol] (MWh)	18	10.31	9.32	9.34	7.05	2.27	0		
# viol	96	60	49	48	41	36	0		
Max viol (MW)	163	138	135	153	127	105	0		
∑viol (MWh)	6,575	4,022	3,554	3,377	2824	903	0		
Out-of-Market Correction (N-1 Reliable Solution)									
OMC Cost (M\$)	3.04	3.06	2.88	2.61	1.93	1.60	-		
# Online Units	292	292	290	288	290	285	-		

E[viol] – Expected sum of security violations (MWh) **# viol** – Number of cases with security violations **Max viol** – Worst case security violation (MW) \sum **viol** – Actual sum of security violations (MWh)

