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Overall Project Objective, Scope

• Create smart, well-designed reserve policies for reserve 
and ramp products

• Design a multi-stage framework accounting for:
– A look-ahead stage prior to day-ahead (DA) market model
– A DA market security-constrained unit commitment (SCUC) model
– Adjustment period modifications (i.e., out-of-market corrections, 

OMCs) 

• Develop data-mining techniques to determine reserve 
policies

• Compare and contrast developed policies with stochastic 
programming approaches 
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Looking Back

• Conference Publications/Presentations:
[1] N. Li, N. G. Singhal, and K. W. Hedman, “An enhanced security-constrained 

unit commitment model with reserve response set policies,” in Proc. 50th
Hawaii Int. Conf. on System Sciences, pp. 3065-3074, Jan. 2017.

[2] S. Zhang, N. G. Singhal, K. W. Hedman, V. Vital, and J. Zhang, “An 
evaluation of algorithms to solve for do-not-exceed limits for renewable 
resources,” in Proc. 48th Hawaii Int. Conf. on System Sciences, pp. 2567-
2576, Jan. 2015.

• Journal:
[1] N. G. Singhal, N. Li, and K. W. Hedman, “A data-driven reserve response 

set policy for power systems with stochastic resources,” IEEE Trans. 
Sustain. Energy, under review.

[2] N. G. Singhal, N. Li, and K. W. Hedman, “A reserve response set model for 
systems with stochastic resources,” IEEE Trans. Power Syst., under review.
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Looking Back

• Remaining Activities:
– Finalization of analysis regarding market implications of proposed 

methodology (planned journal submission)
– Final reporting
– Documentation, dissemination

• Related Work / Industry Outreach and Presentations
– Leveraged separate ARPA-E project on related topic to engage 

with industry:
MISO November 2016
ERCOT January 2017
PG&E April 2017
SPP May 2017

6



INSERT ORG LOGO (Optional)

Overview

• Overall Project Objective, Scope
• Looking Back
• Need for Stochastic-Oriented Processes
• Looking Forward: Industry Practices, Movement
• Proposed Methodology: Enhanced Reserve Policies for 

Systems with Stochastic Resources
• Numerical Results: 2383-bus Polish Test System
• Concluding Remarks, Looking Forward

7



INSERT ORG LOGO (Optional)

Need for Stochastic-Oriented Processes

• Existing uncertainties
– Resource forced outages (contingencies)
– Renewable resources (wind, solar)
– Distributed energy resources

• Combining uncertainty modeling with resource 
scheduling

• Stochastic programming
– Computational complexity
– Market barriers

Increasing uncertainties and distributed resources call for stochastic-
oriented processes and decision support tools – MISO
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Industry Practices, Movement

• Existing market models
– Based on deterministic approaches that inadequately address 

uncertainty and variability
– Numerous approximations to address the underlying stochastic 

program

• Industry response, movement
– MISO: Zonal reserve deliverability constraints
– CAISO: Generator contingency and remedial action scheme 

modeling (proposed), flexible ramping product
– ISO-NE: Do-not-exceed (DNE) limits
– EPRI in collaboration with CAISO: Dynamic reserve procurement
– Long-standing practice: Participation factor modeling in real-time 

contingency analysis (RTCA)
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Long-Standing Practice: Transmission 
Contingencies

Post-contingency transmission constraints for each 
modeled transmission contingency case, 𝒄𝒄

Post-
contingency

flow on line ℓ

Pre-
contingency

flow on line ℓ

Redistributed 
flow from 

contingency line 
𝑐𝑐 to line ℓ

Traditional practice

•Explicit representation of line contingencies
•No second-stage recourse decisions
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MISO: Zonal Reserve Deliverability 
Constraints

MISO utilizes post-contingency transmission constraints to 
determine their zonal reserve requirements [1]

[1] Y. Chen, P. Gribik, and J. Gardner, “Incorporating post zonal reserve deployment transmission constraints into energy 
and ancillary service co-optimization,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 537-549, Mar. 2014.

Post-
contingency

flow

Pre-
contingency

flow

Effect of 
generator 

contingency 
on flow

Effect of  
zonal reserve 
deployment 

on flow

Pre-determined 
zonal reserve 

deployment factor

Optimal nodal (zonal) 
reserve deployment 

factor

(Existing practice)(Room for improvement)

12



INSERT ORG LOGO (Optional)

MISO: Zonal Reserve Deliverability 
Constraints

Post reserve deployment transmission constraint [1]

[1] Y. Chen, P. Gribik, and J. Gardner, “Incorporating post zonal reserve deployment transmission constraints into energy 
and ancillary service co-optimization,” IEEE Trans. Power Syst., vol. 29, no. 2, pp. 537-549, Mar. 2014.

𝐹𝐹𝑖𝑖,𝑡𝑡𝑃𝑃 𝑝𝑝𝑡𝑡,𝑃𝑃𝑡𝑡 − 𝐸𝐸𝑘𝑘,𝑡𝑡 � 𝐵𝐵𝑖𝑖,𝑘𝑘,𝑡𝑡
𝑇𝑇𝑇𝑇𝑇𝑇𝑃𝑃 + 𝐷𝐷𝑘𝑘,𝑡𝑡

𝑆𝑆𝑃𝑃𝑇𝑇𝑆𝑆 � �
𝑘𝑘′∈𝐾𝐾

{𝑟𝑟𝑘𝑘′,𝑡𝑡
𝑆𝑆𝑃𝑃𝑇𝑇𝑆𝑆 � 𝐵𝐵𝑖𝑖,𝑘𝑘′,𝑡𝑡

𝑆𝑆𝑃𝑃𝑇𝑇𝑆𝑆}

+ 𝐷𝐷𝑘𝑘,𝑡𝑡
𝑆𝑆𝑈𝑈𝑃𝑃𝑃𝑃 � ∑𝑘𝑘′∈𝐾𝐾{𝑟𝑟𝑘𝑘′,𝑡𝑡

𝑆𝑆𝑈𝑈𝑃𝑃𝑃𝑃 � 𝐵𝐵𝑖𝑖,𝑘𝑘′,𝑡𝑡
𝑆𝑆𝑈𝑈𝑃𝑃𝑃𝑃} ≤ �𝐹𝐹𝑖𝑖,𝑡𝑡 ∀𝑖𝑖 ∈ 𝐼𝐼,𝑘𝑘 ∈ 𝐾𝐾

Pre-determined 
zonal reserve 

deployment factor

(Existing practice)

Optimal zonal (nodal) 
reserve deployment 

factor

(Room for improvement)
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CAISO: Generator Contingency and 
Remedial Action Scheme (RAS) Modeling

• CAISO intends to update its market models to include [2]:
– Generator contingencies explicitly and pre-defined RAS
– Combined transmission and generator contingencies explicitly

• Post-contingency transmission constraints for each 
modeled generator contingency case [2]
– Explicit representation of generator contingencies
– No second-stage recourse decisions

[2] CAISO, “Generator contingency and remedial action scheme modeling,” Mar. 2017 [Online]. Available:  
http://www.caiso.com/Documents/RevisedStrawProposal-GeneratorContingencyRemedialActionScheme.pdf

Post-
contingency

flow

Pre-
contingency

flow

Effect of 
generator 

contingency 
on flow

Effect of 
reserve 

response on 
flow
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𝐹𝐹𝑙𝑙𝑡𝑡 − 𝑃𝑃𝑃𝑃𝐷𝐷𝐹𝐹𝑛𝑛 𝑐𝑐 ,ℓ𝑝𝑝𝑐𝑐𝑡𝑡 + ∑𝑔𝑔:𝑔𝑔≠𝑐𝑐 𝑃𝑃𝑃𝑃𝐷𝐷𝐹𝐹𝑛𝑛 𝑔𝑔 ,ℓ𝐺𝐺𝐷𝐷𝐹𝐹𝑔𝑔𝑡𝑡𝑐𝑐 𝑝𝑝𝑐𝑐𝑡𝑡

Post-contingency transmission constraints for each modeled 
generator contingency case [2]

Where,

𝑮𝑮𝑮𝑮𝑭𝑭𝒈𝒈𝒈𝒈𝒄𝒄 =
𝟎𝟎, ∀𝒈𝒈 ∉ 𝑮𝑮𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭

𝒖𝒖𝒈𝒈𝒈𝒈𝑷𝑷𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎

∑∀𝒈𝒈:𝒈𝒈≠𝒄𝒄 𝒖𝒖𝒈𝒈𝒈𝒈𝑃𝑃𝒈𝒈𝒎𝒎𝒎𝒎𝒎𝒎
, ∀𝒈𝒈 ∈ 𝑮𝑮𝑭𝑭𝑭𝑭𝑭𝑭𝑭𝑭

𝐺𝐺𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹: Subset of generators with frequency 
response capability, 𝐺𝐺𝐹𝐹𝑇𝑇𝐹𝐹𝐹𝐹 ⊂ 𝐺𝐺.

CAISO: Generator Contingency and 
Remedial Action Scheme (RAS) Modeling

[2] CAISO, “Generator contingency and remedial action scheme modeling,” Mar. 2017 [Online]. Available:  
http://www.caiso.com/Documents/RevisedStrawProposal-GeneratorContingencyRemedialActionScheme.pdf

Post-
contingency

flow

Determination of 
more appropriate 

participation 
factors

Pre-defined
generation loss 

distribution 
factors

(Existing practice) (Room for improvement)
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Proposed Methodology

• Proposed gen contingency (or renewable resource 
deviation) modeling:

−�𝐹𝐹𝑙𝑙𝑇𝑇𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅 ≤ 𝐹𝐹𝑙𝑙𝑡𝑡 − 𝑃𝑃𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝐷𝐷𝐹𝐹𝑛𝑛 𝑐𝑐 ,𝑙𝑙 + ∑𝒈𝒈:𝒈𝒈≠𝒄𝒄 𝒓𝒓𝒈𝒈𝒈𝒈�𝜷𝜷𝒈𝒈,𝒍𝒍,𝒈𝒈
𝒄𝒄 ≤ �𝐹𝐹𝑙𝑙𝑇𝑇𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅

• Reserve response factors: interpreted as a factor that 
defines the average impact of a responsive generator; 
weighted PTDF

• Again, no recourse decisions

Pre-contingency 
flow on line 𝑙𝑙

Change in flow due 
to loss of generator 𝑐𝑐

Change in flow due
to reserve response
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Determination of Reserve Response Factors

• Data mining model: Support Vector Machines for 
regression and function estimation (or Support Vector 
Regression with linear kernels)
– Target: post-contingency flow due to activated reserve
– Attributes: activated reserve quantities from responsive generators
– Instances: net load scenarios (uncertainty); historical data or 

generate hypothetical data

• Goal: determine a regression function that approximates 
the post-contingency flows due to nodal reserve 
deployment

• Test the obtained reserve response factors 𝜷𝜷𝒈𝒈,𝒍𝒍,𝒈𝒈
𝒄𝒄 against 

various operational states (out-of-sample testing)
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Simulation Setup

• The method (offline) uses a data-mining algorithm
– Offers augmentation with minimal added computational burden

• The modified SCUC formulation enhances reserve 
determination (both quantity and location)
– Improves reserve deliverability on critical links
– Approximately captures uncertainty (between scenarios)

19
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Out-of-Market Corrections (OMC)

• Approximate market models, stochastic programs (with 
limited scenarios): produce unreliable solutions
– Out-of-sample testing: may have load shedding

• Often, a value of lost load (VOLL) is assumed to estimate 
the cost of load shedding
– Results: subjective

• Our analysis simulates dispatch operator out-of-market 
correction procedures to better estimate actual costs
– All solutions are reliable, no load shedding

• Other OMC terms: uneconomic adjustments; supplement 
dispatch; out-of-sequence/out-of-merit dispatch; reserve 
disqualification; reserve down-flags
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Comparison: Base Case Reserve Model

• A zonal reserve model
– Reserve sharing between zones: ′𝛼𝛼′ policy defined in relation to 

the available headroom

• Illustration: Pre- and post-contingency limits: 50 MW and 100 MW

MRenewable
Uncertainty

Demand
Uncertainty

Reserves
Zone 1: Export Zone Zone 2: Import Zone

M

Supply

Case 1 (liberal policy): 𝛼𝛼 = 1

= 1 × 100 − 50 = 50 MW 

Case 2 (conservative policy): 𝛼𝛼 = 0.75

= 0.75 × 100 − 50 = 25 MW 
Reserve sharing limit from zone 1 to zone 2:
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• Comparison of the proposed reserve model with:
– 1) Single-zone reserve model (myopic) 
– 2) Reserve model with varying reserve sharing (𝜶𝜶) policies
– 3) Extensive-form stochastic unit commitment

• Four lines formulated with the post-contingency transmission 
constraint

0.0 2.5 5.0 7.5 10.0 12.5 15.0

Extsv.

Proposed

𝛼𝛼=0.85

𝛼𝛼=0.9
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𝛼𝛼=1.0
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Average Cost (M$)
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Results: 2383-Bus Polish System, Day 1

Market SCUC and OMC Costs
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Myopic 𝛼𝛼=1.0 𝛼𝛼=0.95 𝛼𝛼=0.9 𝛼𝛼=0.85

Av
g 

%
 C

os
t S

av
in

gs

Benchmark Approach
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The relative MIP gap tolerance for the DA SCUC model is set to 0.05%. The OMC and the extensive form stochastic program are terminated upon reaching an optimality gap of 0.25% (or after 1200 seconds) and 0.025% (or after 1800 seconds), respectively. Testing is performed using CPLEX v12.6 on an 8-core, 3.6 GHz machine with 48 GB installed memory, and a 64-bit operating system.
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• Bubble chart comparing the cost of the final N-1 reliable solution 
against the expected sum of security violations for the DA market 
SCUC solution for each scenario

– Size of the bubble represents the number of cases with violations for the 
corresponding scenario

• Computational time comparison

Results: 2383-Bus Polish System, Day 1
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• Comparison with respect to two additional reliability metrics 
– Max viol: maximum reported (or worst-case) security violation
– ∑viol: actual sum of security violations

• Average number of additional units that are turned to obtain an N-1 
reliable solution

Results: 2383-Bus Polish System, Day 1
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• Tested using net load scenarios from different test days

Results: 2383-Bus Polish System, Day 2

Table 1. Average Results across Net Load Scenarios from Second Test Day 

Approach Myopic 𝛼𝛼=1.0 𝛼𝛼=0.95 𝛼𝛼=0.90 𝛼𝛼=0.85 Proposed Extsv.
Final Cost (M$) 13.76 13.87 13.85 13.83 14.13 13.62 11.43

DA SCUC Solution
SCUC Cost (M$) 10.69 10.83 10.93 11.07 11.66 11.91 11.43

Time (s) 97 111 103 106 115 112 911
Contingency Analysis

E[viol] (MWh) 20.51 11.86 9.91 8.63 7.37 1.84 0
# viol 100 68 60 51 45 43 0

Out-of-Market Correction (N-1 Reliable Solution)
OMC Cost (M$) 3.07 3.04 2.92 2.76 2.47 1.71 -

E[viol] – Expected sum of security violations (MWh)
# viol – Number of cases with security violations

Max viol – Worst case security violation (MW)
∑viol – Actual sum of security violations (MWh)
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Concluding Remarks, Looking Forward

• Traditional modeling of reserve and ramp products:
– Inadequate account of pre- and post-contingency congestion aptly
– Consequence: 

• Over-procurement of ancillary services (market inefficiency, market distortion)
• Or required out-of-market corrections / discretionary operator modifications 

(expensive, market transparency issues, market distortion)

– Consequences grow with increased reliance on stochastic 
resources

• Proposed approach:
– Designed to avoid practical (market, scalability) barriers while still 

capturing most of the potential cost savings
– Most applicable to existing practices, least disruptive
– Successful in finding solutions that capture congestion reasonably
– Requires fewer OMCs; improves market transparency and pricing
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Concluding Remarks, Looking Forward

• Via communication with Jim Price on CAISO’s recently 
proposed generator contingency modeling changes:
– Enhanced reserve modeling and ramp products… capture 

majority of the savings… compared to a market design overhaul 
that implements two-stage stochastic programs

• Path forward for industry: dynamic reserve (and ramp) 
products/policies
– CAISO’s recent proposed changes, MISO’s reserve deliverability 

constraints

• Continue pursuit through ARPA-E NODES project and 
partnerships with industry (PJM, looking for others), 
software developers (Nexant Inc.), and DOE (Sandia 
National Laboratories)

29
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Questions

Thank you.

30



INSERT ORG LOGO (Optional)

Comparison: Base Case Reserve Model

• A zonal reserve model
– Reserve sharing between zones: ′𝛼𝛼′ policy defined in relation to 

the available headroom

• Illustration: Pre- and post-contingency limits: 50 MW and 100 MW

MRenewable
Uncertainty

Demand
Uncertainty

Reserves
Zone 1: Export Zone Zone 2: Import Zone

M

Supply

Case 1 (liberal policy): 𝛼𝛼 = 1

= 1 × 100 − 50 = 50 MW 

Case 2 (conservative policy): 𝛼𝛼 = 0.75

= 0.75 × 100 − 50 = 25 MW 
Reserve sharing limit from zone 1 to zone 2:

 ∑𝑘𝑘∈𝑍𝑍 �̃�𝑟𝑘𝑘𝑡𝑡𝑐𝑐 ≥ 𝑃𝑃𝑐𝑐𝑡𝑡 + 𝑟𝑟𝑐𝑐𝑡𝑡, ∀𝑐𝑐 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑃𝑃
 �̃�𝑟𝑘𝑘𝑡𝑡𝑐𝑐 ≤ ∑𝑔𝑔∈𝐺𝐺 𝑘𝑘 𝑟𝑟𝑔𝑔𝑡𝑡 , ∀𝑐𝑐 ∈ 𝐺𝐺, 𝑘𝑘 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑃𝑃

 Reserve sharing between zones:  also limited by,

𝑺𝑺𝒌𝒌𝒈𝒈
𝒛𝒛 𝒄𝒄 = �𝜶𝜶 �𝑭𝑭𝒍𝒍𝒌𝒌−𝒛𝒛 𝒄𝒄

𝑭𝑭𝒎𝒎𝒈𝒈𝑹𝑹𝑹𝑹 ± 𝑭𝑭𝒍𝒍𝒌𝒌−𝒛𝒛(𝒄𝒄)𝒈𝒈, ∀𝒄𝒄 ∈ 𝑮𝑮,𝒌𝒌 ∈ 𝒁𝒁, 𝒈𝒈 ∈ 𝑻𝑻

𝑘𝑘: index for zones; 𝑧𝑧(𝑐𝑐): index for contingency zone 𝑐𝑐

31



INSERT ORG LOGO (Optional)

Proposed Reserve Model

• Proposed reserve model
∑𝑔𝑔 𝑟𝑟𝑔𝑔𝑡𝑡 ≥ 𝑃𝑃𝑔𝑔𝑡𝑡 + 𝑟𝑟𝑔𝑔𝑡𝑡 ∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑃𝑃
∑𝑔𝑔 𝑟𝑟𝑔𝑔𝑡𝑡 ≥ 𝜂𝜂𝜂∑𝑛𝑛𝐷𝐷𝑛𝑛𝑡𝑡 ∀𝑡𝑡 ∈ 𝑃𝑃
∑𝑘𝑘∈𝑍𝑍 �̃�𝑟𝑘𝑘𝑡𝑡𝑐𝑐 ≥ 𝑃𝑃𝑐𝑐𝑡𝑡 + 𝑟𝑟𝑐𝑐𝑡𝑡 ∀𝑐𝑐 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑃𝑃
�̃�𝑟𝑘𝑘𝑡𝑡𝑐𝑐 ≤ ∑𝑔𝑔∈𝐺𝐺𝑘𝑘 𝑟𝑟𝑔𝑔𝑡𝑡 ∀𝑐𝑐 ∈ 𝐺𝐺,𝑘𝑘 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑃𝑃

�̃�𝑟𝑘𝑘𝑡𝑡𝑐𝑐 ≤ 𝐹𝐹𝑙𝑙𝑘𝑘−𝑧𝑧 𝑐𝑐
𝑇𝑇𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅 ± 𝐹𝐹𝑙𝑙𝑡𝑡𝑘𝑘−𝑧𝑧(𝑐𝑐) ∀𝑐𝑐 ∈ 𝐺𝐺𝑆𝑆𝑅𝑅 ,𝑘𝑘 ∈ 𝑍𝑍, 𝑡𝑡 ∈ 𝑃𝑃

−𝐹𝐹𝑙𝑙𝑇𝑇𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅 ≤ 𝐹𝐹𝑙𝑙𝑡𝑡 − 𝑃𝑃𝑐𝑐𝑡𝑡𝑃𝑃𝑃𝑃𝐷𝐷𝐹𝐹𝑛𝑛 𝑐𝑐 ,𝑙𝑙 + ∑𝑔𝑔:𝑔𝑔≠𝑐𝑐 𝑟𝑟𝑔𝑔𝑡𝑡𝛽𝛽𝑔𝑔,𝑙𝑙,𝑡𝑡
𝑐𝑐 ≤ 𝐹𝐹𝑙𝑙𝑇𝑇𝑅𝑅𝑡𝑡𝑅𝑅𝑅𝑅

∀𝑐𝑐 ∈ 𝐺𝐺𝑅𝑅 , 𝑙𝑙 ∈ 𝐿𝐿𝑅𝑅 , 𝑡𝑡 ∈ 𝑃𝑃. 
𝑘𝑘: index for zones; 𝑧𝑧(𝑐𝑐): index for contingency zone 𝑐𝑐
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INSERT ORG LOGO (Optional)

• Tested using net load scenarios from different test days

Results: 2383-Bus Polish System, Day 2

Table 1. Average Results across Net Load Scenarios from Second Test Day 
Approach Myopic 𝛼𝛼=1.0 𝛼𝛼=0.95 𝛼𝛼=0.90 𝛼𝛼=0.85 Proposed Extsv.

Final Cost (M$) 13.76 13.87 13.85 13.83 14.13 13.62 11.43

DA SCUC Solution
SCUC Cost (M$) 10.69 10.83 10.93 11.07 11.66 11.91 11.43

Time (s) 97 111 103 106 115 112 911

# Online Units 244 243 244 244 250 247 253
Contingency Analysis

E[viol] (MWh) 20.51 11.86 9.91 8.63 7.37 1.84 0

# viol 100 68 60 51 45 43 0

Max viol (MW) 175 132 131 133 129 66 0

∑viol (MWh) 7,450 4,578 3,901 3,386 2,967 644 0

Out-of-Market Correction (N-1 Reliable Solution)
OMC Cost (M$) 3.07 3.04 2.92 2.76 2.47 1.71 -

# Online Units 289 288 288 288 286 282 -

E[viol] – Expected sum of security violations (MWh)
# viol – Number of cases with security violations

Max viol – Worst case security violation (MW)
∑viol – Actual sum of security violations (MWh)
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INSERT ORG LOGO (Optional)

• Tested using net load scenarios from different test days

Results: 2383-Bus Polish System, Day 3

Table 2. Average Results across Net Load Scenarios from Third Test Day 
Approach Myopic 𝛼𝛼=1.0 𝛼𝛼=0.95 𝛼𝛼=0.90 𝛼𝛼=0.85 Proposed Extsv.

Final Cost (M$) 13.67 13.91 13.92 13.90 14.08 13.56 11.83

DA SCUC Solution
SCUC Cost (M$) 10.63 10.85 11.04 11.29 12.15 11.96 11.83

Time (s) 96 113 109 108 112 121 815

# Online Units 244 244 245 249 268 249 263
Contingency Analysis

E[viol] (MWh) 18 10.31 9.32 9.34 7.05 2.27 0

# viol 96 60 49 48 41 36 0

Max viol (MW) 163 138 135 153 127 105 0

∑viol (MWh) 6,575 4,022 3,554 3,377 2824 903 0

Out-of-Market Correction (N-1 Reliable Solution)
OMC Cost (M$) 3.04 3.06 2.88 2.61 1.93 1.60 -

# Online Units 292 292 290 288 290 285 -

E[viol] – Expected sum of security violations (MWh)
# viol – Number of cases with security violations

Max viol – Worst case security violation (MW)
∑viol – Actual sum of security violations (MWh)
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