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Background and Motivation: Power Grid

• Significant expansion of renewable generation
– GW-scale wind generation (~8,200MW in 2016) www.awea.org

– >1GW of PV solar installed in 2014 www.seia.org

• Increased capacity exacerbates variability issues
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Demand Variability
• Grid demand not synchronized with renewable production
• Peak demand → fast changing and high prices
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The Peak Demand Problem
• Residential buildings are the primary cause
• Industry could help  - how?

Source: Paul Wattles, ERCOT Overview, Smart Energy Summit, 2012

Demand > 1000 kW

Demand up to 1000 kW 
per user 
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Industrial Demand Response

Soroush and Chmielewski, Comput. Chem. Eng., 51, 86-95, 2013; Paulus and 
Borggrefe,  Applied Energy, 88, 432-441, 2011

• Demand response: paired events
– lower production at peak time, compensate off-peak
– assumptions: excess capacity available, product storage feasible, transitions 

are feasible

peak

off-
peak
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Industrial Demand Response

• Frequent production rate (schedule) changes: process 
dynamics must be accounted for in production scheduling
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Hierarchy of Process Operation Decisions

Production management
• Assume steady-state operation
• Typically carried out off-line

Control 
• Account for dynamics
• Online, in real-time

Different time horizons, objectives, personnel: production 
management and control carried out independently

Seborg et al., Wiley, 2010, Baldea and Harjunkoski, Comput. Chem. Eng., 71, 377-390, 2014, Shobrys and White, Comput. Chem. 
Eng, 26, 149—160, 2002

PROCESS

Regulatory control
(seconds – minutes)

Multivariable and constraint 
control (minutes – hours)

Scheduling
(hours – days)

Planning
(weeks – months)
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Hierarchy of Process Operation Decisions

Seborg et al., Wiley, 2010, Baldea and Harjunkoski, Comput. Chem. Eng., 71, 377-390, 2014, Shobrys and White, Comput. Chem. 
Eng, 26, 149—160, 2002

PROCESS

Regulatory control
(seconds – minutes)

Multivariable and constraint 
control (minutes – hours)

Scheduling
(hours – days)

Planning
(weeks – months)

Mezoscale interactions

Overlap in the time scales of production management and process 
control motivates considering the integrated problem
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Overall Project Objective

• Create framework that will enable the safe and 
extensive utilization of the DR potential of 
chemical and petrochemical process.
– Synchronize production scheduling with the control 

system
– Account for the dynamic nature of transitions
– Solvable in real time (deal with model size)

• Case study: air separation unit (ASU) 
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Approach: Scale-Bridging Model

ProcessSupervisory 
controller

Scheduling

outputs
y

inputs
u

setpoints/
targets
ysp

+

-

process state for rescheduling

schedule for predicting

Baldea and Harjunkoski, Comput. Chem. Eng., 71, 377-390, 2014

• Low dimensional
– Dynamics at scheduling-relevant time scales

• Capture closed-loop input-output dynamics
– Stability guaranteed
– Robustness to modeling error

• Data-driven

SBM
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Accomplishments during past year

• Theory: 
– development of LINEAR forms for scale-bridging 

models (based on Hammerstein Wiener models)
– Initial MILP production scheduling formulation

• Air separation case study: 
– Transition data for range of production rates were 

generated from a detailed model
– Continuous HW models identified for scheduling-

relevant variables
– Discretized and linearized continuous HW models 
– 0.01-0.24% error
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Scale-Bridging Model Development
1. Acquire relevant data

– Simulate detailed model and control system, or use 
operating data from the plant model

– Cover full range of set-point changes

2. Identify nonlinear SBMs
– Hammerstein-Wiener (HW) models

3. Develop linearization strategies
– Can be exact in specific cases (e.g., piecewise linear)

Input nonlinearity

State space model

Output nonlinearity
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Linearization Strategies

1. Binary variables + Big-M
– Binary variable generated for each breakpoint—

Substantial increase in problem size

2. Special Ordered Sets of type 2 (SOS2)
– Utilizes linear interpolation and assigned weights 

(SOS2 variables) for active segment

3. Ongoing: reduced SOS2 using upper/lower 
bounds for variables not in objective function

– Only requires 2 breakpoints (endpoints)
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Case Study: DR of Air Separation Unit
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 Separate components of air via cryogenic distillation: high purity (>99%)
 Refrigeration via thermal expansion and energy recovery
 Large energy consumers: 19.4 TWh in US in 2010
 Store energy as liquefied molecules: potential to shift grid load

Johansson, MSc thesis, KTH/UT Austin, 2015



Performance of Linear Reformulation

,l
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Preliminary Results: ASU Scheduling

• Goal: Modulate production rate to track real-time 
electricity pricing

min
𝑢𝑢𝑖𝑖

𝐽𝐽 = �
𝑖𝑖

�
𝑗𝑗

𝜙𝜙(𝑝𝑝𝑖𝑖𝑗𝑗 ,𝑤𝑤𝑖𝑖𝑗𝑗
𝐹𝐹𝐹𝐹,𝑤𝑤𝑖𝑖𝑗𝑗

𝐹𝐹𝐹𝐹,𝑤𝑤𝑖𝑖𝑖𝑖𝑖𝑖 )

s.t.
HW models
Inventory model
Initial Conditions
Process Constraints
Quality Constraints

Symbol Definition
i Scheduling time step

j Dynamics time step

J Operating Cost

pij Electricity prices

wij HW output

winv Inventory output

ui System inputs (set-points)

Fp Production rate

Ff Feed flowrate
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Preliminary Results: ASU Scheduling

• Goal: Modulate production rate to track real-time 
electricity pricing

• Target solution time:
– Less than 1 hour for 72 h horizon

• Problem size (after pre-solve):
– 82,201 continuous variables
– 10,658 SOS variables

• Expected benefits:
– 20% reduction in peak demand
– 3% reduction in operating cost (considerable for ASU)

17



Remaining Deliverables: FY16

• Improve scheduling formulation
– Lagrangian relaxation/decomposition, reduce solution 

time to less than 1 hour

• Simulate schedule on detailed model
– Assess constraint violations, refine HW models if 

needed or modify (back-off) constraints

• Peer reviewed publication: 
– Linear surrogate dynamical models for embedding 

process dynamics in optimal production scheduling 
calculations, Comput. Chem. Eng., in prep.
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Accepted publications/presentations
• Accepted peer reviewed presentations: 

– Linear Surrogate Dynamical Models for Embedding 
Process Dynamics in Optimal Production Scheduling 
Calculations: AIChE Annual Meeting, Minneapolis, MN, 
November 2017

– Demand response operation of air separation units 
utilizing an efficient MILP modeling framework: AIChE 
Annual Meeting, Minneapolis, MN, November 2017
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Planned Activities and Schedule

Year 2:
1. Algorithms for linearizing low-order data-driven 

models of DR scheduling-relevant dynamics
1. Peer reviewed publication #1

2. General  scheduling model for DR operations of 
chemical processes with dynamic constraints

1. Peer reviewed publication #2
2. Peer reviewed presentation
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Case Study: DR of Air Separation Unit
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 Separate components of air via cryogenic distillation: high purity (>99%)
 Refrigeration via thermal expansion and energy recovery
 Large energy consumers: 19.4 TWh in US in 2010
 Store energy as liquefied molecules: potential to shift grid load

Johansson, MSc thesis, KTH/UT Austin, 2015



Big-M Linearization

Bilinear term takes value of Ai,k
when zi,k=1 and zero when 
zi,k=0

Symbol Definition
H Hammerstein designation

k Breakpoint index

i Scheduling time step (index)

pw Value of function at breakpoint

bp breakpoint

u inputs (set-points)

h Hammerstein output

z Binary variable
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Linearization Example (using Big-M )
ℎ𝑖𝑖 = 𝑃𝑃𝑊𝑊𝑖𝑖,0

𝐻𝐻 + 𝑃𝑃𝑊𝑊𝑖𝑖,1
𝐻𝐻 − 𝑃𝑃𝑊𝑊𝑖𝑖,0

𝐻𝐻 𝑧𝑧𝑖𝑖,1𝐻𝐻 + 𝑃𝑃𝑊𝑊𝑖𝑖,2
𝐻𝐻 − 𝑃𝑃𝑊𝑊𝑖𝑖,1

𝐻𝐻 𝑧𝑧𝑖𝑖,2𝐻𝐻 + 𝑃𝑃𝑊𝑊𝑖𝑖,3
𝐻𝐻 − 𝑃𝑃𝑊𝑊𝑖𝑖,2

𝐻𝐻 𝑧𝑧𝑖𝑖,3𝐻𝐻 + ⋯
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Symbol Definition
k Breakpoint index

i Scheduling time step

pw Value of function at 
breakpoint

bp breakpoint

u inputs (set-points)

h Hammerstein output

z Binary variable
z1=1

z2=1

z3=0
z4=0

z5=0

z6=0 z7=0

z8=0

ui

hi

bp2 bp3 bp4 bp5

pw8

pw4-5
pw3

pw6-7

bp6-7 bp8



SOS2 Linearization

Symbol Definition
H Hammerstein designation

k Breakpoint index

i Scheduling time step (index)

pw Value of function at breakpoint

bp breakpoint

u inputs (set-points)

h Hammerstein output

b Binary variable

λ SOS2 variable
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SOS2 Linearization Example
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λ1=0

λ2=α

λ3=1-α
λ4=0

λ5=0

λ6=0 λ7=0

λ8=0

ui

hi

bp2 bp3 bp4 bp5

pw8

pw4-5

pw3

pw6-7

bp6-7 bp8



SOS2 Reduction (Wiener Block)

Infeasible

Infeasible

dT≥1.9oC For variables not in the objective 
function:
• Output nonlinearity can be 

estimated by endpoints at the 
upper and lower bounds
• Variable stays between 

bounds
• Eliminates many 

breakpoints

y (from state space)

w
 (d

T)

Infeasible

Feasible
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Discrete vs. Continuous HW Models
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Planned Activities and Deliverables

Year 3:
1. Representation of DR in Power Systems Models

– Mathematical modelling
– Electricity pricing algorithms
– Peer reviewed publication #1

2. Electricity pricing algorithm and validation on 
ERCOT model

– Peer reviewed publication #2

3. Peer reviewed presentation
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