DOE/OE Transmission Reliability Program

Models and Strategies for Optimal Demand Side Management in the Chemical Industries

Morgan T. Kelley, Ross Baldick, Michael Baldea

McKetta Department of Chemical Engineering Department of Electrical and Computer Engineering Institute for Computational Engineering and Sciences The University of Texas at Austin mbaldea@che.utexas.edu

> June 14, 2017 Washington, DC

Background and Motivation: Power Grid

Data: www.ercot.com

- Significant expansion of renewable generation
	- GW-scale wind generation (~8,200MW in 2016) www.awea.org
	- >1GW of PV solar installed in 2014 www.seia.org
- Increased capacity exacerbates variability issues

Demand Variability

- Grid demand not synchronized with renewable production
- Peak demand \rightarrow fast changing and high prices

The Peak Demand Problem

- Residential buildings are the primary cause
- Industry could help how?

Source: Paul Wattles, ERCOT Overview, Smart Energy Summit, 2012

Industrial Demand Response

- Demand response: paired events
	- lower production at peak time, compensate off-peak
	- assumptions: excess capacity available, product storage feasible, transitions are feasible

Soroush and Chmielewski, Comput. Chem. Eng., 51, 86-95, 2013; Paulus and Borggrefe, Applied Energy, 88, 432-441, 2011

Industrial Demand Response

• Frequent production rate (schedule) changes: process dynamics must be accounted for in production scheduling

Hierarchy of Process Operation Decisions

Different time horizons, objectives, personnel: production management and control carried out independently

Seborg et al., Wiley, 2010, Baldea and Harjunkoski, Comput. Chem. Eng., 71, 377-390, 2014, Shobrys and White, Comput. Chem. Eng, 26, 149—160, 2002

Hierarchy of Process Operation Decisions

Overlap in the time scales of production management and process control motivates considering the integrated problem

Seborg et al., Wiley, 2010, Baldea and Harjunkoski, Comput. Chem. Eng., 71, 377-390, 2014, Shobrys and White, Comput. Chem. Eng, 26, 149—160, 2002

Overall Project Objective

- Create framework that will enable the safe and extensive utilization of the DR potential of chemical and petrochemical process.
	- Synchronize production scheduling with the control system
	- Account for the dynamic nature of transitions
	- Solvable in real time (deal with model size)
- Case study: air separation unit (ASU)

Approach: Scale-Bridging Model

Baldea and Harjunkoski, Comput. Chem. Eng., 71, 377-390, 2014

- Low dimensional
	- Dynamics at scheduling-relevant time scales
- Capture closed-loop input-output dynamics
	- Stability guaranteed
	- Robustness to modeling error
- Data-driven

10

Accomplishments during past year

- Theory:
	- development of LINEAR forms for scale-bridging models (based on Hammerstein Wiener models)
	- Initial MILP production scheduling formulation
- Air separation case study:
	- Transition data for range of production rates were generated from a detailed model
	- Continuous HW models identified for schedulingrelevant variables
	- Discretized and linearized continuous HW models
	- 0.01-0.24% error

Scale-Bridging Model Development

- 1. Acquire relevant data
	- Simulate detailed model and control system, or use operating data from the plant model
	- Cover full range of set-point changes
- 2. Identify nonlinear SBMs
	- Hammerstein-Wiener (HW) models

 $h = H(u)$ Input nonlinearity $\frac{d\vec{x}}{dt} = A\vec{x} + Bh$ State space model $y = C\vec{x}$ Output nonlinearity $w=W(y)$

- **3. Develop linearization strategies**
	- Can be exact in specific cases (e.g., piecewise linear)

Linearization Strategies

- 1. Binary variables + Big-M
	- Binary variable generated for each breakpoint— Substantial increase in problem size
- 2. Special Ordered Sets of type 2 (SOS2)
	- Utilizes linear interpolation and assigned weights (SOS2 variables) for active segment
- 3. Ongoing: reduced SOS2 using upper/lower bounds for variables not in objective function
	- Only requires 2 breakpoints (endpoints)

Case Study: DR of Air Separation Unit

- Separate components of air via cryogenic distillation: high purity (>99%)
- Refrigeration via thermal expansion and energy recovery
- Large energy consumers: 19.4 TWh in US in 2010
	- Store energy as liquefied molecules: potential to shift grid load

Performance of Linear Reformulation

Preliminary Results: ASU Scheduling

• Goal: Modulate production rate to track real-time electricity pricing

Preliminary Results: ASU Scheduling

- Goal: Modulate production rate to track real-time electricity pricing 70
- Target solution time:
	- Less than 1 hour for 72 h horizon
- Problem size (after pre-solve):
	- 82,201 continuous variables
	- 10,658 SOS variables
- **Expected benefits:**
	- **20% reduction in peak demand**
	- **3% reduction in operating cost (considerable for ASU)**

Remaining Deliverables: FY16

- Improve scheduling formulation
	- Lagrangian relaxation/decomposition, reduce solution time to less than 1 hour
- Simulate schedule on detailed model
	- Assess constraint violations, refine HW models if needed or modify (back-off) constraints
- Peer reviewed publication:
	- Linear surrogate dynamical models for embedding process dynamics in optimal production scheduling calculations, Comput. Chem. Eng., in prep.

Accepted publications/presentations

- Accepted peer reviewed presentations:
	- Linear Surrogate Dynamical Models for Embedding Process Dynamics in Optimal Production Scheduling Calculations: AIChE Annual Meeting, Minneapolis, MN, November 2017
	- Demand response operation of air separation units utilizing an efficient MILP modeling framework: AIChE Annual Meeting, Minneapolis, MN, November 2017

Planned Activities and Schedule

Year 2:

- 1. Algorithms for linearizing low-order data-driven models of DR scheduling-relevant dynamics
	- 1. Peer reviewed publication #1
- 2. General scheduling model for DR operations of chemical processes with dynamic constraints
	- 1. Peer reviewed publication #2
	- 2. Peer reviewed presentation

Acknowledgements

• DOE: DE-OE0000841

Case Study: DR of Air Separation Unit

- Separate components of air via cryogenic distillation: high purity (>99%)
- Refrigeration via thermal expansion and energy recovery
- Large energy consumers: 19.4 TWh in US in 2010
	- Store energy as liquefied molecules: potential to shift grid load

Big-M Linearization

$$
PW_{i,k}^H = \frac{pw_{k+1}^H - pw_k^H}{bp_{k+1}^H - bp_k^H} (u_i - bp_k^H) + pw_k^H
$$

$$
bp_k^H < u_i \le bp_{k+1}^H
$$

$$
h_i = PW_{i,k=0}^H + \sum_{k} [(PW_{i,k}^H - PW_{i,k-1}^H)z_{i,k}^H] = PW_{i,k=0}^H + \sum_{k} A_{i,k}^H z_{i,k}^H = PW_{i,k=0}^H + \sum_{k} B_{i,k}^H
$$

Bilinear term takes value of $A_{i,k}$ when $z_{i,k}=1$ and zero when $z_{i,k}=0$

 $B_{i,k}^H \ge A_{i,k}^H - M(1 - z_{i,k}^H)$

 $B_{i,k}^H \leq A_{i,k}^H + M(1 - z_{i,k}^H)$

 $B_{i,k}^H \geq -Mz_{i,k}^H$

 $B_{i,k}^H \leq M z_{i,k}^H$

Linearization Example (using Big-M)

The University of Texas at Austin

SOS2 Linearization

SOS2 Linearization Example

26

SOS2 Reduction (Wiener Block)

 $dT \ge 1.9$ ^oC
For variables not in the objective function:

- *Output* nonlinearity can be estimated by endpoints at the upper and lower bounds
	- Variable stays between bounds
	- Eliminates many breakpoints

Discrete vs. Continuous HW Models

28

Planned Activities and Deliverables

Year 3:

- 1. Representation of DR in Power Systems Models
	- Mathematical modelling
	- Electricity pricing algorithms
	- Peer reviewed publication #1
- 2. Electricity pricing algorithm and validation on ERCOT model
	- Peer reviewed publication #2
- 3. Peer reviewed presentation

