Microalgae Commodities from Coal Plant Flue Gas CO₂ U.S. Department of Energy, Office of Fossil Energy, NETL

> Cooperative Agreement DE-FE0026490, 10/01/15– 09/30/17 May 24, 2017

MicroBio Engineering Inc. John Benemann, Principal Investigator, Tryg Lundquist Co-P.I.

Kyle Poole

- **Facilities Designs** •
- Algae Equipment \bullet
- **R&D** and Business Consulting •
- Techno-Economic Analyses
- Life Cycle Assessments

- Wastewater Reclamation
- Nutraceuticals, Aquafeeds
- **Biofuels**, **Biofertilizers**

T. Lundquist J. Benemann

Ian Woertz

Ruth Spierling Braden Crowe Matt Hutton

Neal Adler

MBE's RNEW® Process for wastewater treatment and biofuels production

Recycle Nutrients Energy Water

NETL Project Objectives

- **Primary Objective**: Develop detailed techno-economic and life cycle assessments <u>specifically</u> for OUC SEC coal-fired power plant with two microalgae CO₂ utilization/mitigation options:
 - 1. Biogas production to replace coal for maximum CO₂ <u>mitigation</u> (task modified to produce vehicle biofuel).
 - 2. Commodity animal feeds production for maximum <u>economic</u> <u>benefit</u> of flue gas CO_2 use.
- Secondary Objective: Demonstrate algae biomass production using OUC SEC flue gas with native algae and conversion to biogas; evaluate suitability as animal feed.

Participants

- MicroBio Engineering Inc. (MBE), Prime, P.I.: John Benemann, CEO TEAs, LCAs, gap analyses, ponds for OUC, UF, Project management
- Subrecipients:
- Orlando Utilities Commission (OUC): provide data on SEC power plant, emissions, etc.; Operate test ponds at SEC with flue gas CO₂
- Univ. of Florida (UF): operate test ponds, algae anaerobic digestion
 Arizona State Univ.: Train OUC and UF staff in algae cultivation
- Anzona state Univ.: Inam OUC and OF state in algae cultivation
 Scripps Institution of Oceanography (SIO), Lifecycle Associates
- (LCA), SFA Pacific Inc.: LCA, TEA and engineering assistance to MBE

1. Algae à biogas for power generation (1st Year)

Wastewater (optional)

Flue Gas CO₂ & Electricity

Landfill

Landfill

Gas

Biogas

Future Algae Farm (100 ponds; 1,000 acres)

Renewable Natural Gas Vehicle Fuel

OUC-SEC ~900 MW Coal-fired PP

2. Algae animal feed production (this year)

Freshwater Ag Fertilizers

Flue Gas CO₂ & Electricity

Landfill

Landfill

Gas

Future Algae Farm (100 ponds; 1,000 acres)

Animal Feeds

OUC-SEC ~900 MW Coal-fired PP

Technology Background

3-acre raceway pond with CO₂ injection

Lamellar settler for harvesting Sump for CO2 transfer

Paddle wheel

Pond floors lined with clay.

Four 1.25-ha raceways in Christchurch, New Zealand. PI: Rupert Craggs, NIWA

Hawaii spirulina farm with large raceways

Paddle wheels

Cyanotech

Earthrise Nutritionals LLC plant is roughly equivalent to a module of larger modeled farm.

50 acres of paddle wheel mixed raceway ponds for Spirulina production. 2 Jala

Algae demonstration plant design at a small fossil power plant for a California utility.

MBE design: Six 5-acre raceways with smaller ponds for inoculation

Wastewater treatment is enhanced by CO₂ addition.

Add CO₂ to achieve complete nutrient assimilation during wastewater treatment.

Full-scale wastewater project in California. MBE & Cal Poly biofuel R&D supported by DOE BETO.

1. Facultative Ponds

Paddle wheels

2. Two 3.5-acre raceways

3. Settling Ponds

Algae are coagulated, settled, and solar dried.

~100,000 gallons of 3% solids algae in decanted settling basin

Solar dried algae

5-acre covered lagoon digester at a California dairy. Such low-cost design could be used for algae digestion.

Experimental Work

Task 2: Experimental Work at OUC and UF

- Operate four 3.5-m² ponds at each location
- At OUC, compare flue gas to pure CO₂
 Productivity, metals concentration (water & biomass)
- At OUC and UF, determine seasonal productivities at optimized hydraulic residence times (HRTs)
- At UF, determine methane yields at one biomass concentration in batch methane potential tests

Flue gas from scrubbers to condensate traps to pump to pilot ponds

Flue gas from scrubbers to condensate traps to pump to pilot ponds

Microalgae observed at OUC-SEC Ponds

AR - DARD AR

Filamentous algae dominate at OUC, which allows for easy harvesting of the biomass.

Filamentous algae dominate at OUC.

Pilot ponds at University of Florida - Gainesville

Bioflocculating cultures that settle

Flue gas cultures have been more productivity than pure CO₂ cultures. Follow-up experiments to confirm.

Site Selection

Potential Sites near OUC-SEC

Layout of 400 ha Algae Production Ponds near OUC-SEC

Modeling

Modeling assumptions are based on MBE experimental data and analysis.

- Annual average productivity: 33 g/m²-d
 - 15 g/m²-d: autotrophic growth on flue gas CO_2
 - 18 g/m²-d: mixo-/hetero-trophic growth on organic C from recycle of whole anaerobic digestate to raceways
 - 4.5 g/m²-hr: Peak summer productivity on flue gas CO_2
- 45% Overall loss factor in flue gas CO₂ supply to ponds
- 90% efficiency in gravity harvesting (losses are recycled to ponds)
- Biogas production: 0.32 L methane/g VSS
- Nutrient recycle losses: 10% nutrient loss

Power plant assumptions are based on OUC Stanton Energy Center actual values.

- Coal Type: Illinois Basin Bituminous
- 2014 CO₂ Emissions: 5,076,875 tons
- Flue gas composition (Post Desulfurization)
 - 11% CO₂
 - 80 ppm SO₂
 - 140 ppm NOx
 - 100 ppm CO
 - 1.5 ug/scm Hg

Techno-Economic Analysis

Renewable natural gas (RNG) production from algae is straightforward and allows for use of wastewater.

36

Capex is mostly ponds, site, and land for RNG case.

Opex is mostly labor, water, and maintenance for RNG case. Co-product revenue is needed for CO_2 utilization.

Distribution of opex and annualized capex

Bond Repayment: \$8,500,000 /yr

Return on Equity: \$3,900,000 /yr

Operating Costs: \$11,600,000 /yr

Biogas Revenue: \$933,000 /yr @ \$2 /mmBTU

CO₂ Utilization Cost: **\$816 /metric ton** (without coproducts)

Preliminary

MICROBIO EX

Wastewater treatment and transportation carbon credits are potential revenue sources.

Preliminary

Animal feed case uses clean water and fertilizer.

Capex is similar to biogas case but with dewatering costs.

Opex is similar to RNG case but with fertilizer costs added.

Preliminary

Conclusions

Economical CO₂ mitigation with biogas will require a combination of:

- WWT credit
- RIN and LCFS credits
- Further cost cutting/process improvements

Work in Progress

- Production of animal feed instead of biogas
- Land-use change
- Albedo change
- Non-GHG LCA impacts
- Site Specific Layout
- Additional sensitivity analysis

Thank You!

TrygLundquist@MicroBioEngineering.com