

TEA Modeling Perspectives on Algae CO₂ Sourcing


Ryan Davis National Renewable Energy Laboratory

Algae CO2 Workshop May 23, 2017 Orlando, FL

Bulk Flue Gas: Logistical/Equipment Challenges

Logistical/equipment challenges:

- On-site: Expensive and logistically challenging to route 4-5 ft FG pipelines around a farm >1,000 acres
 - Flue gas may constrain product options from biomass
- Off-site: Day/night compressor power cycling may be impractical
 - NREL algae farm report: 15 km pipeline = 80 MW max instantaneous power demand – cannot merely turn on and off such a large machine (requires 4-6X current draw at startup)
 - Assumed marginal turndown at night = 75 MW as 24-hr average
 - Higher power demand to run compressor than the amount of power generated to produce the CO₂

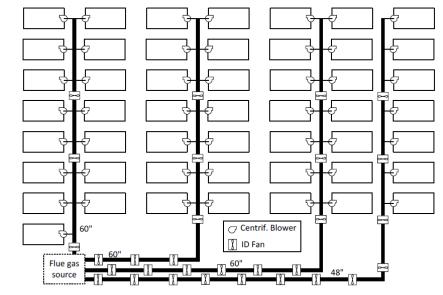
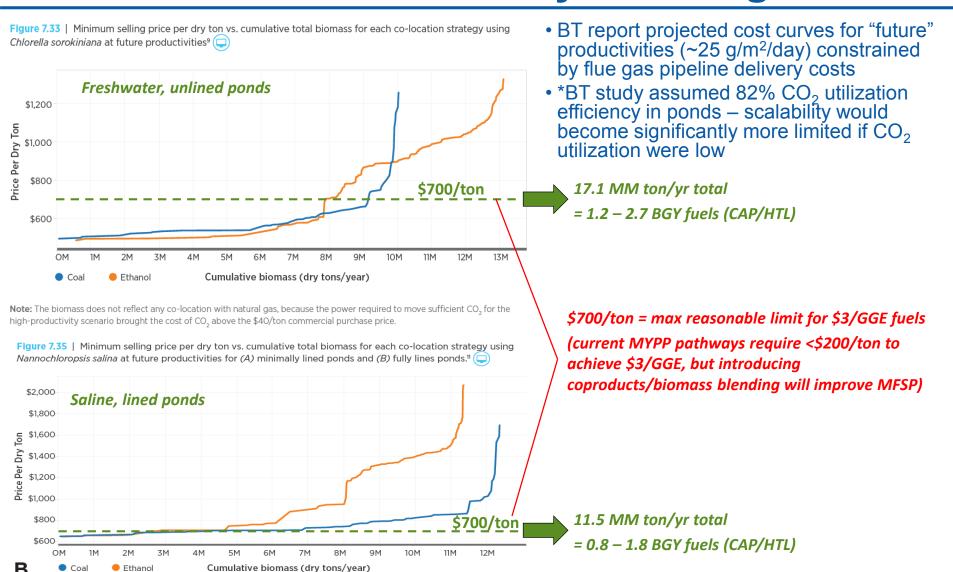



Figure 17. Layout of flue gas piping and fans for the 50-module system

Bulk Flue Gas: Scalability Challenges

Note: The biomass does not reflect any co-location with natural gas, because the power required to move sufficient CO₂ for the high-productivity scenario brought the cost of CO₂ above the \$40/ton commercial purchase price.

*https://energy.gov/sites/prod/files/2016/12/f34/2016_billion_ton_report_12.2.16_0.pdf

Alternatives to Bulk Flue Gas

Carbon capture

- Significantly less costly and logistically challenging for on-site delivery to ponds (8X lower pipeline distribution costs)
- Relaxes constraints on flat unoccupied land availability directly colocated with power plant
- May extend the CO₂ transport range significantly and expand the BGY fuel potential (*key to make a case for national scalability)
- However, currently challenged by LCA based on high energy demand for CC (gen-1 MEA) – need to establish gen-2 details

				_
Scenario	GHG Emissions g CO ₂ e / MJ RD _a ^a	Fossil Energy Use MJ/MJ RD。	Petroleum Use	
	g CO2e / MJ KD _e	MJ/ MJ KD _e	MJ/MJ RD.	_
Revised 2022 Target				1451 00 0 0 C4141 /L 00 450/ 0110 L
CAP	56	0.71	0.083	MEA CC @ 0.64 MJ _e /kg CO ₂ = 45% GHG \downarrow
HTL	51	0.62	0.027	_
Revised 2022 Target				
CAP	39	0.55	0.081	Co-located flue gas transport = 59% GHG ↓
HTL	38	0.50	0.025	_

http://www.ipd.anl.gov/anlpubs/2016/07/128907.pdf

Carbonate scrubbing

- Allows for 24-hour CO₂ storage, minimizes CO₂ outgassing losses
- But, requires high alkalinity/high pH
- Demonstrate scalability for large >1,000 acre farm?