CO₂ Capture and Utilization: Not so easy

ALGENOL

*D Luo, et al, Env. Sci. & Tech. 44, 8670 (2010).

** R. Lively, et al, Biofuels, Bioprod. Bioref. 9, 72 (2015)

Life Cycle Benefits

Fossil Fuel

GHG Emissions (gCO₂eq/MJ)

Coal Flue Gas Transport with Power Generation

This scenario yields a GHG emissions of 86% compared to fossil fuel

2

Algenol DIRECT TO ETHANOL®

ALGENOL

CO₂ Delivery Systems – Life Cycle and Techno-Economic Analyses

Stand Alone Units

	Case #	CO ₂ Delivery System Description	GHG reduction (fossil fuel reference)*	Equivalent CO ₂ Cost \$/tonne CO ₂ **	
	1	Coal Flue Gas Transport and no Power Generation	24%	45	
	2	Coal Flue Gas Transport with Power Generation	86%	50	Example
	3	Coal Flue Gas with CC and no Power Generation	27%	60	
	4	NGCC Flue Gas with CC and No Power Generation	73%	70	
	5	CHP unit for CO ₂ no Refrigeration	74%	96	
	6	CHP unit for CO ₂ with Refrigeration	85%	50	
	7	NGCC Flue Gas with CC and Power Generation	88%	70	
/	8	CHP System with CC and refrigeration vent absorber exhaust	82%	35	
\backslash	9	Pure CO ₂ (no burden) + NG Power generation**	83%	0	Reference**
	10	Pure CO ₂ (from Coal plant CC) + NG Power generation	48%	55	
$ \setminus $	11	Pure CO ₂ (from NG plant CC) + NG Power generation	62%	65	
	12	Biomass (wood chips) CHP System and CO ₂ capture	113%	46	
	13	Biomass (wood chips) CHP System flue gas	106%	38	

*GHG reduction includes total energy produced with a 1 MJ reference to fossil fuel (gasoline plus surplus electricity supplied to natural gas power plant).

**Techno-Economic Analyses (TEA) quoted as effective cost of CO_2 with respect to a reference Algenol plant with a 10% IRR and zero CO_2 cost (Case 9).

3

Note: For all these cases, spent biomass injected (sequestered).