VOLTTRON --
Peak Demand
Reduction

Chris Winstead

Oak Ridge National Lab

ORNL is managed by UT-Battelle
for the US Department of Energy

%

OAK RIDGE

National Laboratory

Topics of Discussion

Project Requirements

e Sensor Interface

e Connectivity Across Platforms
 Platform Robustness

» User-Facing Interface
 Application Validation

¥, OAK RIDGE

al Labor

=

Priority Based Control - Load Flattening

The priority based control algorithm seeks to flatten electrical loads by quantifying the “need” to
operate of particular electrical loads, and then allowing them to compete for permission based on
distance from setpoint
After priority calculations are made, three reservoirs of loads are created

» Loads that must be activated (those at or in excess of maximal priority)

* Loads that must be deactivated (those at zero priority)

» Loads that may “compete” for activation permission (everything in between)

Ex: HVAC system subject to priority constraints between 1 (min) to 10 (max)
e 1 priority point per 0.1F from setpoint

Must be idle May be actuated by need Must be active
Setpoint = 70.0F |/ Setpoint = 70.0F Setpoint = 70.0F
Temp = 70.8F -
Load #1 Temp = 60.9F Allowed Load #3 Prior?[y =8 SOaS Temp =71.2F
Priority =0 to run Priority = 10
Temp = 70.5F
Load #2 / Temp = 60.7F Load #4 g Load #7 Temp = 71.5F

Priority =5

Priority = 0 Priority = 10

—

Not
Allowed Load #5 Te_mp =70.1F
to run Priority =1

g.:OAK RIDGE

National Laboratory

Presenter
Presentation Notes
Start slides with software. This slide explains the application. Can talk about extension to load shaping/transactive energy by utilizing reservoirs of nodes that can be actuated or not

System Infrastructure

Agent: VOLTTRON Central

Agent
Local

Control

: !

: !

| Message Message Message

I Bus Bus BuS

: 5 | P ! |
I

: L, Agent I L, Agent

. Thermostat | ! Scheduler
I

: I

:]

: I

| : Hardware i, i Control

: Interface i1 Algorithm

%

OAK RIDGE

National Laboratory

Presenter
Presentation Notes
This slide gets into VOLTTRON and how its used on the thermostat. 3 agents, Each handles a different aspect of thermosat operation

Agent Thermostat agent is responsible for polling the

Thermostat sensors and actuating relays

Polling the sensors

(poll period) | > Call method every t seconds
def puplizso nollisell):
poll = self.instance.poll regquest() > PO” thermostat ObjeCt
headers = {'Zone': self.zonenum}
I for idx,platform in enumerate (self.platforms) :i > Publish to all interested platforms
TT 1OnT. — Selr.Conenam:
try: > Publish to internal message bus
zelf.vip.pubsub.publish('pukbsukb', 'poll', headers, poll)
R :d— bl ;1—; =
Log.error('failed to publish to local bus')
##connection timecuts (at least 30s before reconnect)
elif(not platform and (time.time() - self.platform timeouts[idx]) <=30):
continue If platform is not connected,
elif (not platform and (time.time()-self.platform timeouts[idx])>30): Eﬁten1ptt0 connect
gelf.remote setup (idx+l)
else:
Log.info({'"attempting publish to external platforms: Zone
+ str(idzx+l) + '/' + str(len(self.platforms)))
with gewvent.Timeout (3):
try:
platform.vip.pubsub.publish('pubsub’', 'poll' ,headers,poll) PUblISh to external p|atforms
SRS -
Log.exception('no data to puklish')
exXcept gevent.limeout:
Log.exception("timeout™)
gelf.platform timeouts[idx]=time.time () > |f cannot pub“sh’ d|sconnect platform

self.platforms [idx]=0
platform.core.stop ()

g.:OAK RIDGE

National Laboratory

Presenter
Presentation Notes
This slide gets into VOLTTRON and how its used on the thermostat. 3 agents, Each handles a different aspect of thermosat operation

Temperature

Sensor Interface

« Python temperature
GPIO interface

def init_ (self, device_ number=0):

12C protocol to talk to
GPIO

self.iZc = open('/dev
fentl.ioctl(self.iZc, self.I2C SLAVE, 0Ox40)
self.il2c.write(chr(self. SOFTRESET))
time.sleep(0.050)

/iZc-%=s' % device_number, 'r

Request temperature from
sensor and wait for response

def read temperature(self):

time.sleep(self. TEMPERATURE WAIT TIME)
data = self.ilc.read(3)

| self.iZ2c.write(chr(self. TRIGGER_TEMPERATURE NO HOLD))

if self. calculate_checksum(data, 2) = ord(data[2]):
return self. get_temperature_ from buffer(data)

def get_ temperature_ from buffer(data):

unadijusted =
unadjusted &= SHT21. STATUS BITS MASK

unadjusted *= 1

4 g5

unadijusted -= 4
return unadjusted

unadjusted /= 1 << 16 # diwvide by 2°16

"
E -

{ord{data[0]) << 8) + ord(data[l])
zero the status bits

Wrap WiringPi lib
in python using
ctypes

Resolve temp from

Relays

* Python wrapper for
WiringPi C Library

_relayI0 = ctypes.CDLL('./relayIC.=0")

%def relaySetup() :
_relayIO.relaySetup()

%def relaySet (R):
_relayIO.relaySet(ctypes.c_int(R))

%def relavClear(R):
_relaylQ.relayClear(ctypes.c_int (R))

Tdef relayBead(R):

return mode

mode = relayIO.relayRead(ctypes.c_int(R))

Hwoid relaySet({int R){

bytes returned from
if (R==1)
sensor digitalWrite (, HIGH}) !
if (R==2)
digitalWrite (, HIGH}):
if (R==7)
digitalWrite (, HIGH}):;
if (R=—2)
— digitalWrite (, HIGH);
- if (R=—2)
Example of setting / digitalWrite (25, HIGH);
: if (R=—5)
relays USIng digitalWrite (22, HIGH):;
WiringPi lib

g.:OAK RIDGE

National Laboratory

Presenter
Presentation Notes
The regular python interface reads temp/humidity. The WiringPi library controls the relays

Connectivity

def remote =zetup({=self, node):
if{node == =zelf.zonenum) :
retarn

\ 4

Don't try to remotely connect to own platform

else:
try:
Log.info{"Connecting to Zone: " + str{nodp-=-

Connect via IP and present with

masterVIP = destination vip . .
— authentication

»
»

event = gevent.event.Event()

masternode = Agent (address=masterVIF, enable store=False,
— identity=self.Config["identitv"])}

WeElll- 4

Create agent

objects and
connect masternode.core.onstart.connect (lamkxda *a, **kw: event.set () ,event)

gevent.spawn (masternode . core. run)
event..wait (timeout=5

gelf.platforms [node-1] = masternode

except gevent.Timeout:
Log.exception{"Platform Connection Timeout™)

g.:OAK RIDGE

National Laboratory

Presenter
Presentation Notes
The regular python interface reads temp/humidity. The WiringPi library controls the relays

Thermostat Agent
Subscribing to Control

f2iCheck for messages posted to Jead scheduler's control channel
FCubSub. subscribe ("pubsub', 'status") > Subscribe to control channel
del DLLL concrollselr, peer, =Sender, bus, topic, headers, message):
if topic = 'status/z'+str(self.leader_sorted[0]}: .| Take instructions from lead scheduler
if headers["Zone"] = =self.zonenum: i and for correct zone
if meszage = 'activate' and self.uzer mode ='COOL'
if not self.local control: Note the published message
mode = self.instance.activate()
»| Check whether message should be
elif (message = 'shutdown' or self.user mode = 'CFF acted on
if not self.local control: Actonlnessage
mode = self.instance.shutdown()
£22Check for messages posted to local control channel
FFubSub. subscribe("'pubsub', 'local') > Subscribe to local control channel
del poll Tocal concrol(SelT, peer, Zender, bus, topic, headers, message):
if headers["Zone"]==s=elf.zonenum:
if message=="cooll' and self.user mode =='CCOL!
if =self.local control:
self. instgnce .2et_mode (-1} Note the pUb”Shed message
€lif message=='cooll' and self.user mode =='"CCOL

if =zelf.local control:
self.instance.set_mode (-2)

€lif message="off' or self.user mode = "CFF°’
if =zelf.local control:

self.instance.set_mode (0)

»

Check whether message should be
acted on

Act on message

g.:OAK RIDGE

National Laboratory

Thermostat Agent
Checking the Leader

£5ubsribe to leader channel hearthbeat
- > Subscribe to leader channel

iPubSub. subscribe{'pubsub' , 'leader')
def leader check{zelf, peer, =zender, bus, topic, headers, message):
zelf.leader[headers["Zone"]-1] = message

gelf.timecheck[headers["Zone"]-1] = time.time ()

Messages correspond to originating zone
(Zone 1 =1, Zone 2 = 2, etc.)

Note message posted and time sent

A 4

£To reset leader after time threshold is passed

for idxz,drop time in enumerate(self.timecheck): , -
if time.time(] - drop time > 60: | [fleader hasn't posted to channel in

. - over 60s, replace his place on the list

gelf.leader[id=x] = 239

forder =chedulers to move missing to back of listc

zelf.leader zorted = sorted(self.leader) > Sonleaderhajornovenmsang
— schedulers to back of leader list
$#if mo leader available, switch to local control
if self.leader sorted[0]==999: If all leaders are missing, instruct
self.local status=1 » thermostat to take control from local
_ controller

g.:OAK RIDGE

National Laboratory

Interfacing with the User

£1 Temp Current Muode Coordinated Local
71.81 COOL1 COORDINATING
Each thermostat hosts a server for set: 70 set: COOL

CherryPy backend makes calls to
RPC exposed methods via 1
VOLTTRON Central s

Calls to VOLTTRON Central find i J_H
exposed methods by parsing 4 [‘ \J_m [JJ
i -l
|

= Comnbiiaed Camel

platform/agent tags

Calls made to i
XXX.XXX.XXX. XXX/[sonrpc Vi]_I_

VOLTTRON Central hosted on Wo W2 W4 #s W8 w0 @2 g4

e T

L
i

OAK RIDGE

National Laboratory

Validating the Model

 Two approaches used:

« Package agents onto virtual machines and test in discrete event
simulator

» Created Model Agent to be hosted on one of the thermostats

Model Agent

« All thermostat agents made calls to RPC exposed methods within the
model agent that conveyed temperature

« Ability to make calls to RPC methods was dependent on successful
use of temperature sensor

Mode Utilization

g.:OAK RIDGE

National Laboratory

	VOLTTRON --Peak Demand Reduction
	Topics of Discussion
	Priority Based Control – Load Flattening
	System Infrastructure
	Slide Number 5
	Sensor Interface
	Connectivity
	Thermostat Agent�Subscribing to Control
	Thermostat Agent�Checking the Leader
	Interfacing with the User
	Validating the Model
	Discussion

