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Goal Statement

* Current technologies: e This project:

— low C-retention in — effective fractionation,
fuel range combined with
— high H consumption. — catalytic upgrading for
. e C-C bond formation in liquid
e Experimental results allow . Hvdrodeoxvaenation @ vapor
Y ¥e phases

— life-cycle analysis (LCA) and
— techno-economic analysis (TEA)

back fed to the experimentalists to refine selection of catalyst
and process operations

e ultimate objective is

maximizing C efficiency at minimum H utilization.



Quad Chart Overview

Timeline Partners Barriers
e October, 2015 o OU50 % Tt-F. Deconstruction of
« March, 2017 o INL 25 % Biomass to Form Bio-Oil
* 90 % Complete o U. Wisconsin 12.5 % Intermediates
o U. Pittsburgh 12.5 %

Tt-I. Catalytic Upgrading of
Budget Gaseous Intermediates to
Fuels and Chemicals

FY 14-15 FY 15-16 | FY 16-17 Total Planned

Costs to Coststo | Coststo Funding (FY 17- _ .
6/30/15 | 6/30/16 | 12/31/16 | Project End Tt-J. Catalytic Upgrading of
Date Bio-Qil Intermediates to
Fuels and Chemicals
DOE
$1,051,765 $684,474 $338,364 $318,767
Tt-O. Separations Efficiency
Project
Cost Share .
(Comp.)* $398,120  $232.487  $112,329 $6,332 Tt-S. Petroleum Refinery

Integration of Bio-Oil
Intermediates



Approach (Technical)

e Thermal fractionation:

— moderate T and t =» most reactive parts
=>» small oxygenates

— Higher temperatures and faster heating
=>» mostly phenolic compounds

o Catalytic upgrading: Specific catalyst formulations to

— maximize C retention in liquid phase and minimize catalyst deactivation

— C-C bond forming and HDO reactions

o Separation: Refining of the different fractions
=» supercritical extraction and selective adsorption for purer
streams

« LCA and TEA: Analysis LCA and TEA helps continuous
Improvement and feedback




Approach (Management)

e The outcome of this project will be a series of possible process
strategies to produce stabilized liquid projects that could be
inserted in a conventional oil refinery.

e The most important challenge is related to process economics

 The current goal is to find thermal fractionation processes,
catalysts and catalytic reactors, as well as separation processes
that minimize the cost and environmental impacts, maximizing the
liquid yield

 The senior personnel of the different parts of the project
(thermal conversion, separations, catalysis, LCA, TEA) are
responsible of planning, organizing, controlling resources, and
procedures to accomplish the established goal



Technical Accomplishments

Staged torrefaction/pyrolysis to decrease stream complexity

Low Liquid
Yield

Excessive
H2
Consumption

4 )
Small
Oxygenates
Furfurals
and
dehydrated  Phenolics
sugars \

e

HDT

J. Phys. Chem. Lett., 2, 22942295, 2011



Multi-stage Pyrolysis + Catalytic Cascade

STAGES C-C BOND FORMATION FINAL UPGRADE
Light
250-275°C Oxygenates o Aromatization/
T | Acetic acid, — Ketonization —> HDO
’ acetol, acetal
- Water l
Hydrogenation
300-350°C |
’ Sugar derived -
compounds: Aldol
i ' Furanics ( Condensation || HPO — FUELS
Levoglucosan
550-600°C x
¢ Lignin ik
1 derived _
Compounds: ) Alkylation —— HDO
Char Phenolics

Pham, T.N.; Shi, D.;Resasco, D.E. Appl. Catal B: Environmental. 2014, 145,10



Activated carbon adsorptive trapping to improve

Fractionation efficiency
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Pyroprobe effluent passing through activated carbon bed shows
large reduction in levoglucosan, methoxyphenols.
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Upgrade of selected thermal stage streams

Strategies investigated to incorporate two of the most
abundant species from thermal stage streams:
acetic Acid / furfural / phenolics

C-C bond forming

(a) Ketonization/hydrogenation/alkylation (1%t cycle)
Disadvantage =2 C loss and H, consumption

(b) Direct acylation with acetic acid (2"? cycle)

(c) Aldol condensation of acetone/furfural (15t cycle)
Disadvantage = C loss and catalyst deactivation

(d) Formation of cyclopentanone + aldol condensation
(2nd cycle)

HDO reactions



Mechanism of ketonization of acetic acid over HZSM5
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1. Surface acyl are formed by dehydration of acid on Br@nsted zeolite
2. Dehydration happens at lower temperature than ketonization

Can we pick these surface acyl’s ?

Gumidyala, A., Sooknoi, T., & Crossley, S. (2016). Selective ketonization of acetic acid over HZSM-5: The importance of acyl10
species and the influence of water. Journal of Catalysis, 340, 76-84.



New route of acylation =» acetic acid acylating agent

Table Z. Yields for a three-stage torrefaction process of raw oak.
Species Yield [wt 3] Total
1st stage, 270°C 2nd stage, 360°C pyrolysis, 500°C [wt %]
H,O 10.1 6.3 0.0 16.9
Acylating agent —> | acetic acid 69 1.5 0.5 9.3
acetol 3.1 1.5 1.8 6.8
furan 0.0 0.2 0.1 03
+ furfural 1.4 4.1 0.7 6.2
evoglucosan 0.2 7.6 4.8 12.6
toluene 0.0 0.3 0.3 1.1
Substrate /4 guaiacol 1.8 2.1 15 5.4
» | cresal 0.0 1.2 0.5 1.7
1 L0, 1.2 8.5 11.5 272
char 0.0 0.0 12.5 12.5
total 30.7 351 342 100.0
Acylation

Herron, J. A., Vann, T., Duong, N., Resasco, D. E., Crossley, S., Lobban, L. L., & Maravelias, C.
T. (2016). A Systems-Level Roadmap for Biomass Thermal Fractionation and Catalytic

Upgrading Strategies. Energy Technology.
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Comparing cresol, m-furan, furan and toluene acylation
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Dual bed reactor with real streams

" &/ H\’dmsmblyﬁs + H,0 O
\M_ﬁ C} OH

decarbonylation

Scheme 1. Reaction pathways for furfural conversion.
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80%
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% Carbon loss in the form of CO and higher barrier for acylation of furan
+* Can we avoid decarbonylation and promote hydrogenation?



Dual bed reactor with real streams

hydrogenation H;
Metal U\f + )k Zeolite
., -CO
decarbonylation O OH
Scheme 1. Reaction pathways for furfural conversion. L&)
0 0
— Pd/C | HZSM5 —>
5 / \ o
)J\ 7
OH CHs
Yields of products
AA : Furfural mole ratio=1:0.15 _ _ Furan 55
Catalyst : HZSMS5 (Si/Al =40) Conversion@ 30min por— >
Catalyst weight : 50 + 50 mg Furfural = 100% rovlation and
Temperature : 300 °C Acetic acid = 6% e 4
In Hydrogen ketonization products
Other products 9

Main products = furan, methyl furan and traces of other products yet to be identified

Traces of acylation and ketonization ? »



Conversion of furfural in the vapor phase

Ru/TiO, is very selective for methylfuran

100

> Conversion

90 2 Y Furan \/C> /O
20 ; Y Methylfuran \/O —la o B0 ’
© 2-Cyclopentenone Furfuryl alcohol 2 Me,thyl furan

20 e Y Furfurylalcohol Furfural
-+ Y Lights

50 [

a0 [ ®
- <o

30

20 — ® / 2-Cyclopentenone
10 f R

Conversion/Yield (mol %C)

60 E Methylfuran > @

>®

0 @——6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Gas phase. 5% Ru/TiO, , 400°C, atmospheric W/F ()

pressure, under H, Feeding 0.1 mL/h of furfural
and 1800 mL/h of H,

0.9

15



Selectivity shifts to cyclopentanone with torrefaction vapors
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Water increases furfural conversion and cyclopentanone yield
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Liguid Phase C-C bond forming strategies
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Aldol Condensation of Cyclopentanone
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Hydrophobized MgO-SiO,

® %g r

500, W./wv Wt .
Or A e

Conditions: 10 mg dispersed in 5 mL H,0 and stirred at 750 rpm for 10 mins

64%MgO@mSi0,-16.2%0TS 49%MgO@mSi0,-30%0TS



Hydroxy-Alkylation of cyclopentanone and m-cresol

e Two Bronsted acid-catalyzed reactions
« Aldol Condensation : Monomer (1) + Dimer (2)
« HydroxyAlkylation: Monomer (3) + Dimer (4) + Dimer (5) + Trimer (6)

AC products

C\L,lo entanone T
™ % W C,,-C,5 Oxygenates
0
é o
Cyclopentanone
—oh @?} @e} 4] o
12724

OH

@\ oxygenates
)

m-cresol

Catalysts: Amberlyst 36, zeolite beta, etc.



Step 1: C-C bond formation

/ m-cresol/CPO 2:1, \ e Partial removal of O
Cepo = 3M e Pre-stabilizing bio-oil
Catalyst: 3 g Amberlyst 36 * Forming larger oxygenation
via forming C-C bonds

\Conditions: 150°C, 12h, 400 psia Ny
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40
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Step 2: Hydrodeoxygenation and Ring Opening

Solvent: \

Undecane
Catalyst:
0.5g 2%Pd/Al,O,
Reduction:
150°C, 3h
Reaction
Conditions:
250°C, 12h,

\ 800 psia H, /

v’ Carbon
balance = 93%

60 -

50

40

30

20

10

ClO
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Life Cycle Analysis: Comparing scenarios
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Cycle Analysis: Process Overview
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Life Cycle Analysis: GHG Emissions
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Key trade-offs and cost drivers through detailed TEA
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- Acylation and Hydroxyalkylation increase
VETOMSTlel[gleFl fuel product yields without the C losses
previously observed in the path ketonization
/[ alkylation

- Similarly, furanic arrangement to cyclopentanone provides
another way to maximize product yield via C-C bond forming
reactions

- Feedstock cost, hydrogen cost, and capital cost appear to be the
dominant cost drivers

- Multi-stage thermal + catalytic upgrading show better economic
performance than the conventional “ fast pyrolysis + HDO”,
achieving over 80% GHG reductions relative to petroleum diesel
and the highest environmental performance of all the examined
design cases, with promising EROI and GHG emissions profile

- The net improvements in fuel-grade product yields outweigh the
costs of increased process complexity
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