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Catalytic Processes for Production of α,ω-diols 
from Lignocellulosic Biomass
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Project Goal:  Develop an economically viable approach (using 
inorganic catalysis) for conversion of biomass into 1,5 pentanediol
(PDO) and 1,6 hexanediol (HDO) which will lower cost of cellulosic 
biofuels.
Project Outcome:  Experimental data, process and technoeconomic
model for conversion of biomass (white birch, corn stover) into 1,5 
pentanediol and 1,6 hexanediol. 
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Quad Chart Overview

• Project start date: 2/1/2015
• Project end date: 1/29/2018
• Percent complete: 51%

• Ct-E. Efficient Low-Temperature 
Deconstruction 

• Ct-H. Efficient Catalytic Upgrading of 
Sugars/Aromatics, Gaseous and Bio-
Oil Intermediates to Fuels and 
Chemicals 

• Ct-J. Process Integration 

Timeline

Budget

Barriers

Argonne National Lab:    9%
Minnesota:                                  21%
GlucanBio:                                    4%

Partners

Total 
Costs 
FY 12 
–FY 14

FY 15 
Costs

FY 16 
Costs

Total 
Planned 
Funding
(FY 17-
Project End 
Date)

DOE 
Funded 0 464,559 1,255,513 1,614,059

Project Cost 
Share
(UW Madison) 0 107,212 256,439 342,150

Project Cost 
Share
(Minnesota) 0 0 55,240 72,510



High value infrastructure compatible oxygenated 
commodity chemicals from biomass
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Source: Lux Research, Bio-based Materials and Chemical Intelligence Service, www.luxresearchinc.com, 2013 market prices
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α,ω-diols have many uses in the polymer industry
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Particular 1,6-Hexanediol 1,5-Pentanediol 1,4-Butanediol

Applications

 Polyurethanes
 Coatings
 Acrylates
 Adhesives
 Polyester Resins
 Plasticizers
 Others

 Polyester plastics
 Polyurethanes
 Pharmaceuticals
 Inks and coatings
 Plasticizers
 Solvent and industrial 

chemicals
 Others

 Biodegradable plastics
 Hot melt polyesters
 Coatings
 Polyurethanes
 Adhesives
 Pharmaceuticals
 Fiber particle and 

composite

Major players

 BASF
 Ube Industries
 Lanxess
 Perstorp AB
 Lishui Nanming Chemical
 Fushun Tianfu Chemicals

 BASF
 Ube Industries
 Marubeni Corporation
 Lishui Nanming Chemical

 BASF
 Dairen Chemicals
 Lyondell Chemicals
 Shanxi Sanwei Group
 ISP
 Invista
 Mitsubishi Chemicals

Current market size 
(2013) $524 Million < $10 Million $5,550 Million

1,5-PDO and 1,6-HDO are produced 
from dicarboxylic acid as byproducts of 
caprolactam.



Approach for Conversion of Lignocellulosic 
Biomass to PDO and HDO
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Management Approach
• UW lead and all partners report to PI
• Each institutions responsible for own tasks
• Follow workplan and make sure we can complete 

milestones
• Work with DOE review team to make sure workplan is 

consistent with goals
• UW in charge of process integration
• One senior post-doc is in charge of economic modeling 

which incorporates all the data
• Have regular phone calls (bimonthly to monthly) with 

partners
• Quarterly reports to DOE
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Technical Approach: The chemistry from 
Lignocellulosic Biomass to PDO and HDO
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Results: Conceptual process design based 
on laboratory data
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Minimum selling 
price is lower than 
current market price 
of 1,6 HDO and 1,5 
PDO

Produce more 1,5 
PDO than 1,6 PDO

Largest operating 
cost is steam cost.

Steam price 
assumes natural gas 
$5.6/MMBTU

(Current US natural 
gas price 
$3.0/MMBTU)

Feedstock costs not 
a very large expense

Results: Economic summary for base case process (all values in 2015$)
Minimum Selling Price (MSP): $4,089 /ton  

1,6-HDO Production   22,743 ton/yr  
1,5-PDO Production   40,291  ton/yr  

1,6-HDO Yield 0.063 ton/dry U.S. ton feedstock 
1,5-PDO Yield 0.111 ton/dry U.S. ton feedstock 

Feedstock + Handling Cost $80.00 /dry U.S. ton feedstock 
Internal Rate of Return (After-Tax) 10%   
Equity Percent of Total Investment 40%         

Installed Equipment Costs  Manufacturing Costs ($/ton HDO) 
Pretreatment $75,600,000  Feedstock + Handling $460 
Furfural Production and Separation $18,700,000  GVL Solvent $59 
PDO Production and Recovery $12,300,000  THF Solvent $199 
LGO+HMF Production $106,600,000  Hydrogen $153 
HDO Production and Recovery $37,600,000  Catalyst Recycling  $89 
Wastewater Treatment $37,300,000  Other Raw Materials 172 
Storage $3,600,000  Purchased Steam $1,025 
Boiler and Turbo Generator $60,300,000  Waste Disposal $18 
Utilities $9,400,000  Net Electricity -$130 
Total Installed Equipment Cost $361,400,000  Fixed Costs $282 

   Capital Depreciation $408 
Added Direct + Indirect Costs $449,000,000  Average Income Tax $244 
        (% of TCI) 55%  Average Return on Investment  $1,111 
     

 
 

 Manufacturing Costs ($/yr) 
Total Capital Investment (TCI) $810,400,000  Feedstock + Handling $29,000,000 

 
 

 GVL Solvent $3,700,000 
Installed Equipment Cost/Annual Ton $15,891  THF Solvent $12,500,000 
Total Capital Investment/Annual Ton $35,634  Hydrogen $9,600,000 

 
 

 Catalyst Recycling  $5,600,000 
Loan Rate 8.0%  Other Raw Materials $10,800,000 
Term (years) 10  Purchased Steam $64,600,000 
Capital Charge Factor (Computed) 0.137  Waste Disposal $1,100,000 

   Net Electricity -$8,200,000 
   Fixed Costs $17,800,000 

Specific Operating Conditions  Capital Depreciation $25,700,000 
Excess Electricity (kWh/kg) 2.5  Average Income Tax $15,400,000 
Plant Electricity Use (kWh/kg) 3.5  Average Return on Investment  $74,000,000 
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Results: Sankey diagram for carbon flows and production 
costs
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Results: There are a number of variables that can decrease the 
product selling price
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• MSP Price can decrease $1,570/ton if 1) assume current NG prices in US and 2) increase 
1,6 HDO yield to 50%.

• Other opportunities for cost reduction: 1) decrease capital cost of LGO production, 2) 
increase biomass feed loading, 3) energy efficient separation (adsorption).
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Results: 1,5-PDO process can improve economics of 
cellulosic ethanol
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• Biomass feed (white birch: 1,000 dtpd) 
• Hemicellulose to 1,5-PDO, cellulose to ethanol
• 1,5-PDO: 36,000 ton/yr; ethanol: 19.3 MMgal/yr
• NREL 2011 report for biomass to ethanol: $2.15/gal (2,000 dtpd feed rate) 

Source: NREL 2011 Report



Results: 1,5 Pentanediol technology could lower the 
price of cellulosic ethanol
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Enzymatic Hydrolysis 
(NREL 2011 report)

>
Synergy with 

1,5-PDO technology Synergy with 
1,5-PDO technology



Results: Most Project Milestones for 
Phase 1 are Complete

Task A: Production of furfural from lignocellulosic biomass
• 86% yield of furfural production from hemicellulose with hemicellulose extraction from White birch.
• Completed all milestones
Task B: Conversion of furfural into 1,5-PDO
• Overall yield of 85% 1,5-PDO from THFA was obtained with “DHH” process.
• Economic analysis indicates 1,5 PDO can be produced (from furfural-derived THFA) at costs comparable to 

1,4 butanediol in a large scale biorefinery
• Completed all milestones
Task C:  Conversion of cellulose into 1,6-HDO
• Overall yield of 35% of 1,6 HDO from cellulose with current work focused on improving this
• All milestones complete except slurry reactor for cellulose dehydration 
Task D: Separation of polyols with an optimized combination of zeolite membranes, adsorbents and 
liquid/liquid extraction
• Subtask D.1:-D.2  Screening of zeolites for 1,5-PDO separation from reaction intermediates and cyclic 

byproducts (Complete)
• Subtask D.3-D5: Investigate liquid—liquid extraction for 1,5-PDO separation (Still in progress)

Task E: Conceptual process design and technoeconomic modeling 
• Completed all milestones
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Results Task A: Cellulose, furfural, and 
lignin production

Liquid/solid 
separation

Biomass

Furfural 
production

Cellulose
(GVL Losses)

Fractionation

Furfural 
purification

Hemicellulose/lignin

Furfural
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Recycled GVL

1,000 dry MT/day
15% loading

Lignin

Liquid/solid 
separation

Cellulose

Recycled GVL

GVL/water (80/20)
H2SO4 (0.055 kg/kg biomass)

H2SO4 neutralized

Biomass Hemicellulose 
extracted (wt%)

Liquid/solid separation 
efficiency (%)

Furfural yield from 
hemicellulose (molar %)

White birch 90.8 95 86
Corn Stover 97 95 72
Switch grass 94.3 95



 Step 1:  THFA Dehydration
• γ-Al2O3 catalyst:  90% yield to DHP

 Step 2:  DHP Hydration
• No catalyst:  99% yield to 2-HY-THP + 

dimers

 Step 3:  2-HY-THP 
Hydrogenolysis

• Ru/C:  >96% yield to 1,5-PD

Results Task B: Furfural to 1,5-Pentanediol
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Task B Experimental Results
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(a) Weingarten et. al (2011)     (b) Ning Li et. al (2011)     (c) Yu-Ting et. al. (2012)     *Amberlyst-70 acid site density

 Phase 1: 
• Hydration proceeded non-catalytically in water

 Phase 2: 
• Solid acids increase hydration rate
• Hydration successfully scaled to continuous flow 

reactor



Task B Experimental Results
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 >99% 1,5-PDO yields over monometallic catalysts

 Currently studying base metal stability and effect of 
promoter on rates (below)



Results: DHH Route has Economic Improvement over 
Hydrogenolysis Route
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• Production cost (excluding feedstock) of DHH pathway is 4.5 times lower
• Catalyst cost of DHH pathway is 47 times lower
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Results Task C: Proposed reaction pathway 
for 1,6-HDO production from cellulose

Step 1 (R1)
Dehydration in THF

Step 2 (R2) 
Hydrogenation in THF

Step 3 (R3) 
Hydrodeoxygenation in H2O
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Reaction conditions: Cellulose (1 wt%, 0.53 g), THF (60 mL), H2SO4 (64 µL Conc., 20 mM), 1000 psi He, 483 K, 700 rpm.

LGO

HMF

LGO+HMF+LGA

LGA

J. He, M.Liu, T. Walker, S.H. Krishna, K. Huang, C.T. Maravelias, J. A. Dumesic G. W. Huber Effect of water 
and solvents on the production of LGO and HMF from Cellulose”, in preparation

1 wt.% cellulose loading
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Hydrogenation

Results: LGO/HMF undergo multi-step hydrogenation 
process to produce 1,6-hexanediol

1. S. H. Krishna, D. J. McClelland, Q. A. Rashke, J. A. Dumesic and G. W. Huber, "Hydrogenation of levoglucosenone to renewable chemicals," Green 
Chemistry, 2017. 
2. S. H. Krishna, T. W. Walker, J. A. Dumesic and G. W. Huber, "Kinetics of Levoglucosenone Isomerization," ChemSusChem, 2017, 10, 129-138.
3. A.M. Allgeier, e. Korovessi, C.A. Menning, J.C Ritter, S.K. Sengupta, C.S Stauffer, " Process for preparing 1,6-hexanediol (US 8865,940 B2)," USA Pat.,
2014.
4. T. Buntara, S. Noel, P. H. Phua, I. Melián-Cabrera, J. G. de Vries and H. J. Heeres, "Caprolactam from Renewable Resources: Catalytic Conversion of 5-
Hydroxymethylfurfural into Caprolactone," Angewandte Chemie International Edition, 2011, 50, 7083-7087.

Hydrogenolysis
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Results: THFDM can be converted into 
1,6-HDO

24

Hydrogenolysis of THFDM conversion in Batch reactor. Reaction conditions: THFDM (5 wt.% in H2O, 20 mL), 1.0 
gm of metal catalyst A, 160 C, 800 psi H2, 700 rpm.
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 256 structures from IZA-SC (International Zeolite Association - The Structure Commission) 
database screened and found 11 frameworks that exhibit favorable adsorption of 1,5-PDO

 Computation of binary 1,5-PDO /H2O adsorption isotherms  yields two framework types with 
high capacity and high selectivity

Screening Zeolitic Adsorbents for 1,5-PDO Separation

X-ray Powder Diffraction Patterns Scanning Electron 
Microscopy Images Mixture Isotherms



Techno-economic Analysis of Alternative Separation 
Processes for 1,5-PDO Recovery
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 Liquid−liquid extraction using low-boiling 
n-octane and adsorptive separation using 
promising zeolite were investigated as 
potential alternative to distillation

 Extraction shows only marginal improvement 
over direct 1,5-PDO/H2O distillation while 
adsorption yields energy savings larger than a 
factor of 2

 Economic analysis was carried out for only 
adsorption process due to its significant 
benefits over distillation

 Adsorption process results in similar capital 
cost, but operating cost is only about 1/3rd

compared to distillation process

Energy Savings:

Economic Analysis:



Multi-step Separation of C6 Product Mixture
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Found zeolites with high
16HDO/12HDO selectivity (S >> 1) 

and inverse selectivity (S << 1)

Compound 103 xaq 103 xorg

water 990 ± 5 5 ± 3

1-hexanol 1.2 ± 0.7 20 ± 10

1,6-HDO 9 ± 5 0.10 ± 0.05

Reaction 
Condition

Major Products Minor Products

1 1,6-HDO (1) 
1,2-HDO (2)

1,5-PDO (3)
1,5-HDO (4)

2 1,6-HDO/1-hexanol 1,5-HDO/1,2-HDO

3 THFDM/1,2,6-
HTO/1,6-HDO

1-hexanol/1,5-
HDO/1,2-HDO

If 1-hexanol is present in significant concentration, then 
liquid−liquid extraction with high-boiling solvent yields
high selectivity for 1-hexanol versus 1,6-HDO (S ≈ 1500) 

Screening of Zeolites considering 3 Product Mixtures

Subsequent Adsorptive Separation of 1,6-HDO 
from intermediates and other side products



Results from project are being published in peer 
reviewed journals and at conferences

5 Publications already published:

1. Fei Cao, Thomas J. Schwartz, Daniel J. McClelland, Siddarth H. Krishna, James A. Dumesic, and George W. Huber, Dehydration of cellulose to 
levoglucosenone using polar aprotic solvents, Energy Environ. Sci., 2015, 8, 1808—1815.

2. Siddarth Krishna, Theodore Walker, James A. Dumesic, George W. Huber, Kinetics of levoglucosenone isomerization, ChemSusChem, in press. 

3. Siddarth H. Krishna, Daniel J. McClelland, Quinn A. Rashke, James A. Dumesic and George W. Huber, "Hydrogenation of levoglucosenone to 
renewable chemicals," Green Chemistry, 2017.

4. Zachary J. Brentzel, Kevin J. Barnett, Kefeng Huang, Christos T. Maravelias, George W. Huber, James A. Dumesic . Synthesis of 1,5-pentanediol from 
furfural combining hydrogenation and ring-opening reactions. ChemSusChem, 2017.

5. Samuel P. Burt, Kevin J. Barnett, Daniel J. McClelland, Patrick Wolf, James A. Dumesic, George W. Huber, Ive Hermans, Production of 1,6 Hexanediol
from Tetrahydropyran-2-methanol by Dehydration-Hydration and Hydrogenation, Green Chemistry, 2017.

2 Submitted Publications under review

1. Jiayue He, Kefeng Huang, Kevin Barnett, Siddarth Krishna, Samuel P. Burt, Ive Hermans, Christos T. Maravelias, James A. Dumesic, George W. Huber 
New catalytic strategy for alfa-omega diol production from lignocellulose biomass, Faraday Discussion, submitted.

2. Kefeng Huang, Kevin J. Barnett,  Zachary J. Brentzel, George W. Huber, James A. Dumesic, Christos T. Maravelias, Process Synthesis and Analysis for 
Conversion of Furfural to 1,5-Pentanediol. Submitted

9 Manuscripts in Preparation

1 granted US Patent, several more patent applications and invention disclosures

3 Plenary Keynotes Talks at: 1) International Symposium on Catalytic Conversion of Biomass (ISCCB 2016), Taipei, Taiwan; 2) New York Catalysis Club; 
3) Symposium on Thermal and Catalytic Sciences for Biofuels and Biobased Products (TCS 2016), Chapel Hill, NC

7 Talks at Technical Meetings: 4 at AICHE Annual Meeting in 2016

28



Relevance to FOA and Program Objectives

• Producing high value oxygenated commodity chemicals that can be 
integrated with fuels (cellulosic ethanol) from renewable resource, 
which helps addressing the environmental challenges from 
petroleum derived plastics.

• New technology/approach: No current routes exist to make these 
chemicals from biomass or non-oil source.

• Technology could lower the price of cellulosic ethanol, which could 
promote prosperity of renewable energy.

• Demonstrating each step in the pathway for the efficient low-
temperature deconstruction (Barrier Ct-E) and the efficient catalytic 
upgrading of sugars/sromatics, gaseous and bio-Oil Intermediates 
to fuels and chemicals (Barrier Ct-H).

• Integrating all steps in a process (barrier Ct-J).
• Providing realistic data with process economic analysis
• Technoeconomic analysis driving the research
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Phase 2 Plans
• Process integration: start with white birch as feedstock and integrate process at laboratory 

scale
• Move reactions from batch to continuous flow reactors
• Obtain required laboratory data that for design of a pilot plant
• Continual improvement by integration between experiments and technoeconomic model to 

reduce costs
• For 1,5-PDO, i) integration of the separate dehydration-hydration-hydrogenation (DHH) 

reaction pathway reaction steps in continuous flow reactors ii) Starting from real biomass-
derived feeds iii) studying catalyst regeneration and stability. 

• For 1,6-HDO, i) integration of the process from cellulose to 1,6-HDO in continuous flow 
reactor ii) develop more advanced catalysts (zeolites, bimetallics, etc ) to improve activity, 
selectivity, or stability iii) Study effect of impurities present in cellulose-derived feed on 
catalyst stability, with the ultimate goal of upgrading a crude cellulose-derived mixture.

• Test adsorption with real feedstock
• Find partner for pilot plant

30



Risks and Mitigation Plan for Phase 2

• Market for 1,5 pentanediol small
– Continue to discuss with licensees of technology and industry to learn more about this 

market

• Economics not attractive to industry
– Continue to optimize process, reduce catalyst cost by understanding chemistry
– Look at other products that could be made from this process (cyrene, THFDM, LGO, etc)

• Catalyst poisons for 1,6 hexanediol pathway
– Identify cause and separation approaches

• Catalysts deactivate due to leaching, sintering
– Measure catalyst concentrations with ICP
– Identify catalyst composition early on

• Solvents decompose/reactive
– Have other backup solvents, work at conditions where solvent doesn’t decompose

• DOE delays contract approval 
– DOE working to make sure this doesn’t happen
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Catalytic Processes for Production of α,ω-diols 
from Lignocellulosic Biomass

32

Project Goal:  Develop an economically viable approach (using 
inorganic catalysis) for conversion of biomass into 1,5 pentanediol
(PDO) and 1,6 hexanediol (HDO) which will lower cost of 
cellulosic biofuels.
Project Outcome:  Experimental data, process and 
technoeconomic model for conversion of biomass (white birch, 
corn stover) into 1,5 pentanediol and 1,6 hexanediol. 
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