DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review

Improved Advanced Biomass Logistics Utilizing Woody Feedstocks in the Northeast and Pacific Northwest

> March 8, 2017 Feedstock Supply and Logistics

Timothy A. Volk SUNY-ESF

Goal Statement

 Goal is to lower the delivered cost of woody crops (hybrid poplar and willow) by optimizing harvesting and logistics supply systems while maintaining biomass quality along the supply chain:

\$84 dry ton total cost to throat of conversion reactor

- Aligns with BETO mission and goals:
 - (1) Develop and demonstrate transformative and revolutionary bioenergy technologies.
 - (2) Enable national biofuels production to reduce dependence on foreign oil
 - (3) Encourage domestic bioenergy and bioproduct industry

Quad Chart Overview

Timeline

- Start: Q1 2015 but contract in June 2016
- End: Spring 2019
- Ongoing project

Budget

	and the second		the second se	
	FY15	FY16	FY17	Total planned funding (FY16- Project End Date
DOE Funded	205,759	196,306	497,134	\$2.3 million
Project Cost Share (Comp.)*	470,649	337,359	334,423	\$1.5 million

*If there are multiple cost-share partners, separate rows should be used.

Barriers Addressed

- Ft-A. Feedstock Availability and Cost
- Ft-D. Sustainable Harvesting
- Ft-E. Terrestrial Feedstock Quality, Monitoring, and Impact on Conversion
- Ft-F. Biomass Storage Systems

Partners

- SUNY ESF
- GreenWood Resources
- ORNL WVU INL (modeling)
- Applied Biorefinery Sciences
- ZeaChem
- Case New Holland
- Honeywell International
- Celtic Energy and ReEnergy

1 - Project Overview – Project Partners

ENERGY

Renewable Energy

1 - Project Overview

- Previous project (August 2010 to August 2014)
 - Primary focus was on the development and performance of a cut and chip harvester system for SRWC
 - Increased performance, lowered costs, consistent quality
 - Harvesting and logistics is 40 60% of SRWC biomass cost

Energy Efficiency & Renewable Energy

1 - Project Overview

- A variety of collection vehicles were tried during previous harvesting operations
- The increased performance of the harvester has highlighted the need to improve the collection and delivery systems.

7 | Bioenergy Technologies Office

2 – Approach (Management)

• Project includes university (2), national labs (2), and commercial partners ranging in size from small to large

Management Approach Iterative: Model Simulation/Optimization & Harvest Planning →Harvest Trials

- Monthly conference calls/webinars and quarterly assessment of milestones using PMP
- Task-specific conference calls/ webinars
- Weekly internal meetings at ESF
- Go/No-Go meeting midway through project

Structure

 Five integrated tasks with feedback and interaction among the tasks

2 – Approach (Technical) - Five Task Areas

Project Integration

2 – Approach (Technical) Five Task Areas

1. Improved Harvesting of Woody Crops (ESF, GWR)

- Improve efficiency and operability of New Holland harvester
- Improve data collection and integrate with machine performance
- Lower poplar/willow harvesting and logistics costs to meet \$84/dry ton

2. Transport and Storage of SRWC feedstocks (ESF, GWR)

- Analysis of transportation of harvested willow and poplar biomass to lower cost of transition from field to end-user
- Analysis of storage options and conditions for willow and poplar to maintain or improve quality

3. Pre-Processing and Blending with other forest-based

biomass to improve feedstock quality (ESF, GWR, INL)

- Evaluate pre-processing methods such as hot water extraction (HWE) to reduce feedstock variability, increase quality, shelf life, and value
- Identify combinations of processing conditions that balance energy consumption and cost with improved feedstock quality, consistency and throughput using the PDU at INL

2 – Approach (Technical) Five Task Areas

- 4. Feedstock Characterization throughout the supply chain (INL, ESF, GWR)
 - Characterize feedstock quality along the supply chain using existing rapid-screening options (e.g. NIR) to monitor and evaluate the impact of supply chains operations on key biomass characteristics relative to biorefinery specifications
 - Develop high-throughput screening systems that evaluate key feedstock characteristics and predict conversion process performance within the supply chain

5. Logistic and Economic Modeling (ORNL, INL, WVU)

- Develop advanced logistics and process simulation models to optimize planning and management of SRWC harvesting and logistics systems
- ORNL IBSAL simulate harvest and transport of harvest operations and provide optimizations for equipment for field-scale operations
- INL-BLM Supply chain designs for delivered feedstocks and catalog of feedstock quality parameters through the supply chain
- WVU- Optimize siting and configurations including integration with other forest based biomass.

2 – Approach (Technical)

Critical Success Factors

- Achieve the \$84 per dry ton costs to meet BETO goals
- Improve system efficiency and expand harvesting window
- Develop and implement system to affordably monitor quality (e.g. moisture content, ash content, sugars, lignin) in the field
- Incorporate preprocessing technologies to maintain/improve quality
- Optimize harvesting and logistics of woody crops through modeling

Challenges

- Diversity of field conditions with a variety of commercial partners
- Coordination of multiple independent players along supply chain
 - Coordinating data collection with harvesting operations
 - Tracking feedstock quality through supply chain
- Leaf-on harvesting, and harvesting in inclement weather
- Uncertain end use markets in the future
- Adapting NIR techniques for fresh biomass samples

B- Background

- Opportunities and Challenges Across a Variety of Conditions
 - Willow Legacy Plantings before 2010 (tight spacing)
 - New Planting Specifications after 20010 (wider spacing)
 - Commercial Growers
 - Phytoremediation Sites
 - Poplar Plantations
 - Different Densities
 - Variety of Ground Conditions
 - Seasonal Differences

3 - Technical Accomplishments/ Progress/ Results

3 – Task 1- Improved Harvesting of Woody Crops

Progress

- Monitoring ~130 ha of willow and poplar harvesting
- Modified and field tested new procedures to integrate data collection from on board computer (fuel consumption, engine load, ground speed, yield monitoring) with GPS and in field plant measurements

Tech Accomplishments

- Intelliview/PLM output to process data from on board computer
- Methods to pair harvester performance with specific field and crop conditions (height, stem diameters, ground conditions, plant form)
- Refined and implemented data collection for unharvested material

Milestones/Status

- Initial calibration of on board yield monitor
- Expanding data collected to relate crop conditions to harvester performance
- Developing methods to link GPS data with onboard machine performance is improving.
- Height appears to be primary limiting plant characteristic
- Two manuscripts in review and in press

3 – Task 1- Improved Harvesting of Woody Crops

Engine load from harvest of hybrid poplar field in **Pacific Northwest**

Intelliview on board New Holland harvester

6 %

3 – Task 1- Improved Harvesting of Woody Crops

17 | Bioenergy Technologies Office

Energy Efficiency & Renewable Energy

Task 1- Improved Harvesting of Woody Crops

- Evaluation of yield monitor (I-A)
 - Willow R² 0.70
 - Poplar R² 0.83 when we included in-field delay times
 - A propensity for the yield monitor to under-predict
 - More work is needed to refine yield estimates

3 – Task 2- Storage and Transport

Progress

- Leaf-on willow pile studies monitored from June to December 2016
 - Factors included size, cover, passive ventilation
- Leaf-off poplar pile study to start this month
- >500 chip samples collected from various stages in the supply chain (fresh, short term storage, pile studies, and delivered)

Tech Accomplishments

- Evaluating pile sizes and protection
- Implementing bar code system so data can be linked to INL library

Milestones/Status

- Sampling protocols for collecting physical samples are in place; will be modified once NIR system is fully functional
- Identified data gaps for modeling team and began addressing them
- Published paper on initial storage trial of willow biomass crops
- Collected data on loading and transportation of willow biomass from operational site

3 – Task 2- Storage and Transport

Leaf on pile study June to December 2016

3 – Task 3- Preprocessing and Blending

Progress

- Willow HWE runs in 6 litre and 1.8 m³ digesters
- Truckloads of willow and poplar delivered to INL for use in PDU

Tech Accomplishments since 2015

- Initial bench pilot-scale trials with the hot water extraction (HWE) pretreatment process
 - Willow biomass responds in a similar fashion to reference hardwoods (sugar maple)
- Further Refinements
 - particle size, temperatures, and residence time

Milestones/Status

- Bench-scale runs to develop time/temperature curves for willow are underway.
- PDU trials with willow and poplar biomass are underway
- A paper on the changes in quality due to HWE is in internal review
- Paper on impact of mixtures of maple, willow, and HWE maple and willow chips for pellets is in preparation

3 – Task 3- Preprocessing and Blending – Hot Water Extraction™

- Utilizes a standard, paper industry pressure vessel
- is Clean Technology because it cooks wood chips in water only
- Incremental deconstruction of wood to capture valuable products

ABS ProcessTM

CleanTech disassembly of woody biomass to capture value not currently realized

Water-based Extract Solution

Pathway B

Pathway A

Hot Water Extraction™

ENERG

Generating two product streams instead of just one

Energy Efficiency & Renewable Energy

3 – Task 3- Preprocessing and Blending

Willow Mass Loss (%) Over Time at 170C

Changes in temperature and time impact mass loss of willow

•

- Bark in process has little impact on removal
- Issues related to particle size

Energy Efficiency 8

Renewable Energy

3 – Task 4- Feedstock Characterization

Progress

- Brimrose Luminar 5030 Handheld NIR was purchased

- Over 200 willow samples scanned for composition and a subset of 25 samples have been sent to INL for wet chemistry to build NIR models
- 32 poplar samples from 8 different clones were sent to INL for wet chemistry characterization to build NIR models

Tech Accomplishments since 2015

- Preliminary models developed for dried willow that give relative composition parameters
 - Screen for cellulose, hemicellulose, acid-insoluble lignin, and ash

Milestones/Status

- NIR based screening protocols are poised for deployment
- NIR models will be updated based on wet chemistry and are will be expanded to include moisture content so fresh samples can be analyzed in the field

3 – Task 4- Feedstock Characterization

Progress

- Preliminary model developed for NIR for willow biomass based on previous wet chemistry work
 - Model under predicts
 hemicellulose content
- Used model to screen about 200 samples of willow from range of genotypes and sites
- Selected 25 samples to provide greatest range of characteristics for wet chemistry analysis at INL
- 25 poplar samples from seven cultivars selected for wet chemistry analysis at INL

Glucose (%)

Attributes of 200 willow samples screened to select representative samples for wet chemistry at INL

Progress

- ORNL IBSAL is a dynamic simulation model based on field operations and transportation of biomass.
 - Regular meetings are occurring to synch field data with IBSAL inputs
- INL- BLM model focused on field to reactor including preprocessing options with a focus on biomass quality
 - Two skeleton models have been developed for the chip/loose and densified formats of willow/hybrid poplar chip processing
 - Using data from PDU runs to improve models
- WVU Optimization model for siting facilities
 - Collecting data on (1) annual biomass feedstock availability data, (2) transportation network data, (3) construction limitation data, and (4) environmental impacts data.

27

Renewable Energy

Tech Accomplishments since 2015

- Baseline runs using IBSAL are being used to inform data acquisition priorities in the field
- ORNL and ESF reviewing data collection and processing protocols
- Developing inputs and outputs for different models to synchronize them and maximize benefits from analysis

Milestones/Status

- ORNL IBSAL model being updated with new field information
- INL initial runs for BLM model underway
- WVU Initial framework and parameterization complete

Harvest of 10 ha willow field using baseline model in IBSAL

Harvest of 100 ha willow field using baseline model in IBSAL

30 | Bioenergy Technologies Office

4– Relevance

- BETO Platform Goals and Objectives (MYPP)
 - Meet the \$84/dry ton objectives by improving the efficiency one of the largest cost components of short rotation woody crops – harvesting and transportation
 - Addresses important facets of terrestrial feedstock supply and logistics in the MYPP
 - Biomass production, Harvest and collection, Storage, Transport and Handling, Preprocessing, Quality Characterization and Assessment

4– Relevance

- Applications for the emerging bioenergy industry
 - Working with private growers, end users and companies to optimize harvesting and logistics to meet their needs in two regions of the country.
 - Moving SRWC to commercialization by improving harvesting and logistics
 - Potential to create 54 63 jobs for every 10,000 of acres of willow grown for energy (Swenson 2010, 2014)
 - Ensure that biomass quality is maintained and/or identify quality challenges throughout supply chain to meet end user specifications and improve conversion efficiency
 - Supply samples and quality data to INL feedstock library so data is available for project developers

4– Relevance

- Advance the state of technology
 - Document and develop best practices for harvesting and establishment in conjunction with commercial growers and end users
 - Developing and implementing system to affordably monitor quality (e.g. moisture content, ash content) along the entire supply chain

5 - Future Work

- Task 1 Improved Harvesting of Woody Crops
 - Continue to monitor commercial willow and poplar harvests
 - Refine field data collection to synchronize with modeling needs
 - Publish BMPs for harvesting and logistics (e.g. harvester selection, collection vehicle optimization, field size and configurations, cultivar effects)

Task 2 Transport and Storage

- Implement poplar pile study
- Conduct leaf off willow pile study
- Refine field data collection to meet modeling needs
- Publish BMPs for transport and storage of willow and poplar systems

• Task 3 Pre-Processing and Blending

- Formulate recommendations for HWE preprocessing technology for fresh and stored willow feedstocks
- Produce preprocessing pathways to meet different end user needs based on designs derived from PDU runs of willow and hybrid poplar

5 - Future Work

- Task 4 Feedstock Characterization
 - Develop and deploy rapid assessment protocols for fresh, stored, and transported feedstocks using NIR equipment
 - Monitor changes in quality along the supply chain
 - Expand INL Bioenergy Feedstock Library with array of willow and poplar samples
- Task 5 Logistic and Economic Modeling
 - Develop logistics configurations of biomass supply chains that include willow, hybrid poplar and other woody feedstocks delivered to the throat of the conversion facility
 - Provide recommendations based on modeling for in field harvesting operations and improve models based on field operations
 - Sensitivity analysis on input parameters to evaluate the impact on variability on model performance
 - Integrate different models being used to maximize benefits from analysis

Summary

- Principal goal is to lower the delivered cost of short rotation woody crops by optimizing a commercial-scale supply system:
 - \$84 Dry Ton total cost to throat of conversion reactor
- Develop advanced logistics and process simulation models to optimize planning and management of the new and existing systems
 - Iterative process using models to inform harvests to generate improved harvest systems
- 130 ha of harvest have occurred with improved monitoring
- Storage studies underway looking at improved material handling
- HWE curves being developed as a treatment that improves and attenuate feedstock quality while providing marketable byproducts
- NIR methodology for rapid assessment to maintain feedstock quality throughout the supply chain

Extra Slides

Publications, Patents, Presentations, Awards, and Commercialization

Papers

- Volk, T.A., J.P. Heavey and M.H. Eisenbies. 2016. Advances in shrub-willow crops for bioenergy, renewable • products, and environmental benefits. Food, Energy and Security. DOI - 10.1002/fes3.82
- Eisenbies, M., T.A. Volk and A. Patel. 2016. Changes in feedstock quality in willow chip piles created in • winter from a commercial scale harvest. Biomass and Bioenergy 86:180-190.
- Vanbeveren, SPP, R Spinelli, M Eisenbies, J Schweier, B Mola-Yudego, N Maganotti, M Acuna, I Dimintriou, • and R Ceulemans. In Press. Mechanized harvesting of short-rotation coppices. Renewable & Sustainable **Energy Reviews.**
- Eisenbies, MH, TA Volk, J Espinoza, C Gantz, R Shuren, B Stanton, and B Summers. In Internal Review. • Silvicultural Factors Affecting Performance of a Single-Pass, Cut and Chip Harvest System on Commercial-Scale, Short-Rotation Hybrid Poplar Biomass Crops. Target journal Biomass and Bioenergy

Presentations

- T.A. Volk was interviewed for an article on willow production and harvesting for the SAF Monthly • publication Forestry Source 21(5):6. http://www.nxtbook.com/nxtbooks/saf/forestrysource 201605/#/6)
- Volk, T.A., J. McAuliffe, C. Calkins, T. Eallonardo, L. Abrahamson, D. Daley, M. Eisenbies, J. Heavey, N. • Sleight. Sustainable reuse remedy of former industrial land in central NY using shrub willows. Poplar and Willow National forum, Portland, OR. Arpil 11 – 13, 2016. (http://hardwoodbiofuels.org/wpcontent/uploads/2016/04/2016-Forum-presentation Volk.pdf)
- Eisenbies, M.H., J. Espinoza, R. Shuren, B. Stanton, B. Summers, A. Himes, J. Possellius. 2015. Harvesting . short rotation hybrid poplar using a New Holland Forage Harvester and SRC Woody Crop Header. USDA AFRI annual meeting. Sept.8-10. Seattle, WA.
- Eisenbies, MH, TA Volk, O Therasme. 2016. Storage, Processing and Quality of Willow Chips. NewBio • Annual Meeting. Penn State University, PA., July 26-28, 2016

Responses to Previous Reviewers' Comments

3 – Task 4- Feedstock Characterization

