

TEXAS TECH UNIVERSITY"

Current and Future Markets and Challenges for Onshore and Offshore Wind in TX

U.S. Department of Energy H2@Scale Workshop May 23-24, 2017, University of Houston

Carsten H. Westergaard, *Professor of Practice* Mechanical Engineering & National Wind institute, Texas Tech University, Lubbock

Agenda

- Texas Tech activities in wind, renewables, grids and energy storage
- Offshore wind in Denmark
- Technology and capacity fact, be careful with the assumptions – especially about the future assumptions
- Territories leading the way
- Offshore challenges
- Storage functionality
- Conclusion

Electric wind energy Denmark anno 1896

Poul La Cour systematically researched how wind power could support his social vision, bringing the power of electricity to the rural areas

Education: meteorologist

Published a magazine, established a wind energy society and wind education

For La Cour, the windmill was a power plant.

His inventions included:

- Aerodynamic investigations in a wind tunnel
- Storage in Hydrogen (no grid !)
- Kratosate: a mechanical adjustment of variable load inputs to improve smooth running of a DC motor

Education at Tech

- 2005 First Wind Energy Graduate Class was offered
- 2007 Wind Science and Engineering PhD
- 2009 Funding by Texas Workforce Commission
- 2010 Graduate Certificate Program 2 Tracks
- 2011 Bachelor of Science in Wind Energy
- 2017 BSWE Metrics
 - 180 majors
 - 50 minors in Wind Energy (6 courses)

GLEAMM is a \$13M award from the State of Texas to test, certify, and develop new electric grid technologies and next generation power electronics *Increase Research, Accelerate Innovation, Grow Field Testing at Group NIRE*

- Smart-grid and Smart-home
- Microgrid and Distributed Energy Resources (DER)
- Cybersecurity and Big Data
- Solar
- Battery storage
- Wind
- Phasor measurement units (PMU)
- Weather and energy forecasting
- Silicon carbide design and manufacturing

GLOBAL LABORATORY FOR ENERGY ASSET MANAGEMENT AND MANUFACTURING

http://gleamm.org/

Huge real world Microgrid and Energy Test Facility

The Battery Storage System (BSS) uses 18 racks with 256 Li-Ion batteries totaling 4,608 battery cells with a combined energy storage capacity of 1 MWhr.

Middelgrunden, Denmark

1

Lillegrunden

Bridge to Sweden 5 miles Tunnel to Copenhagen ~ 2.5 miles

Lillegrunden wind farm – 48 turbines, 377 feet tall. Seen 75 feet above sea level from 12 miles away, 24 miles away, this would be under the horizon First offshore wind turbine, ~1940: concrete and 2-blades Two technologies that keep bouncing back ?

Company F.L Smidth ~1940, Neksø

Company F.L Smidth, Gedser 1956

Tvind school 1978

Nibe, 1982

Näsudden, Sweden, 1982

Elsam (Dong) Tjæreborg, 1989

SEAS (Dong) Avedøre, 1993

Dong Energy, 3 x Siemens 2.3MW, Avedøre, 2010

www.windsofchange.dk ele.aut.ac.i www.hvidovrevindmollel aug.dk

Onshore and Offshore fleet capacity factor is increasing New technology and larger machines

- Capacity factor (ratio of actual energy divided by rated):
 - Nuclear 80 to 90%
 - Coal ~ 70%
 - Natural gas ~39%
- Wind turbines are available 96% to 99% of the time
- Wind energy available is almost uniquely a function of rotor size and wind distribution on the specific site
- Modern wind capacity factor ranges • from 40% to 55 % on both land and offshore, mainly due to rotor size

One modern offshore machine produce energy for 3000 US households

Denmark all wind turbines:

- 5196 turbines
- 4823 MW
- Produced 9466 GWh in 2013
- 30% of the domestic energy consumption

Offshore wind:

- 1271 GW
- Offshore wind accounts for approx. 10% of the domestic energy consumption

Wind power capacity and wind power's share of domestic electricity supply

Load and generation development in Denmark

Source: www.energinet.dk

Onshore and Offshore fleet capacity factor is increasing New technology and larger machines (approximate numbers)

Where	Capacity factor	Penetration	Maximum	Number of turbines
World	24.3%	4%		341,320
US	32.9%	5.6%		52,343 (offshore: 6)
China	19.3%			104,934 (offshore: ~300)
EU	26.3%	10.4%		~128,000 (offshore: 3,589)
Texas	34.5%	15.1%	50%	10,700 (offshore: 0)
DK (offshore)	33.6% (41.4 to 49.4)	42.7%	>140%	5196 (offshore: 512)

Data source:

energynumbers.info/capacity-factors-at-danish-offshore-wind-farms and iea.gov GWEC, ERCOT, BP Energy statistics

Energinet.dk grid, import and export

First in the water US offshore: Block Island

Regional wind PPA's Reducing offshore cost of energy is crucial

Sources:

2013 Wind Technologies market report, Wiser & Bolinger, LBNL / DOE

*1, Fishermen PPA / NJ public utility board

*2, DOE 2010 target for US offshore wind

Offshore cost of energy, still some challenges

Figure 6

Capital and operational expenditures in relation to CoE (own adaptation)

WTGs Foundations Electrical infrastructure Assembly, installation and project development Operational expenditure

SOURCE: Danish Energy Agency, 2010; Nielsen et al, 2010 and own calculations. CoE is defined as the average cost of electri-city production measured in €/MWh during the total life span of the electricity production facilities. Discount rate is 10%.

Wind energy is competitive – Texas is a world class leader

2013 Wind Technologies market report, Wiser & Bolinger, LBNL / DOE

When and where is the power available ?

Regionally and timely variations: Inter-year, yearly, monthly, daily, hourly Short term weather related (storm, thunderstorm, ice, rain etc.) Operational / technical variations

The challenge

- Function
 - Spatial shift of energy (transmission and delivery)
 - Balancing between sources (wind, solar, fossil, nuclear)
 - Time shift of energy (storage)
 - Load and peak values management
 - Ancillary services support
- Cost
 - Meeting demand / market price
 - Storage media lifetime consumptions cost (and efficiency)
 - Turbine lifetime consumption cost
 - System cost and ownership structure
- Control
 - Forecasting of potential generation
 - Plant control technology
 - Source control and transmission control
 - Meet market / demand delivery and price
 - Ownership structures and market pricing

Conclusions

- Denmark has exceed 100% wind many time @around 30%
 - Strong interconnect
 - Strong market
 - One grid operator
- Texas has reached up to 50% wind several times @around 15%
 - Strong market
 - One grid operator
- Offshore wind energy will continue to grow, but fundamentally price and available space play an important role in the US
- On the wind technology side, be careful predicting the future using past data

