

Supply Chain Opportunities for Fuel Cell Buses

Andrew R. Thomas

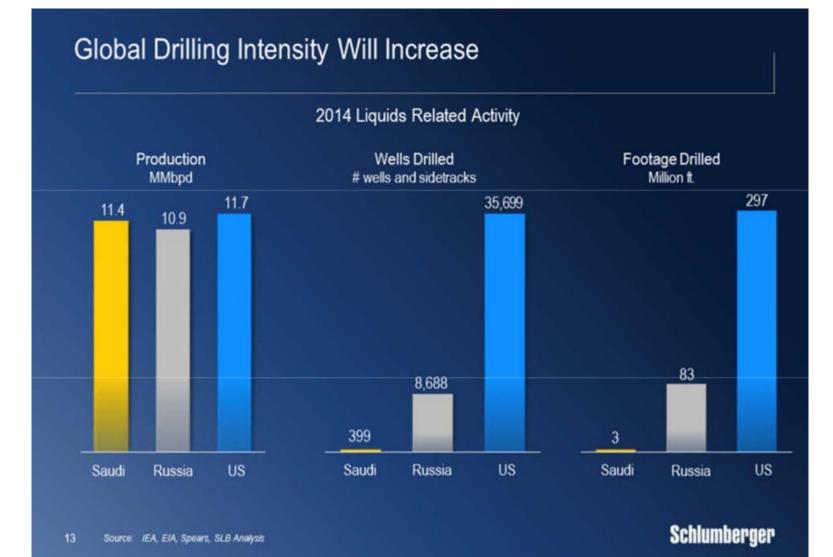
Energy Policy Center Cleveland State University

Sponsored by: Stark Area Regional Transit Authority

SARTA Fuel Cell Bus

Levin Urban.csuohio.edu How the Shale Gale Changed the World

o **2005**:

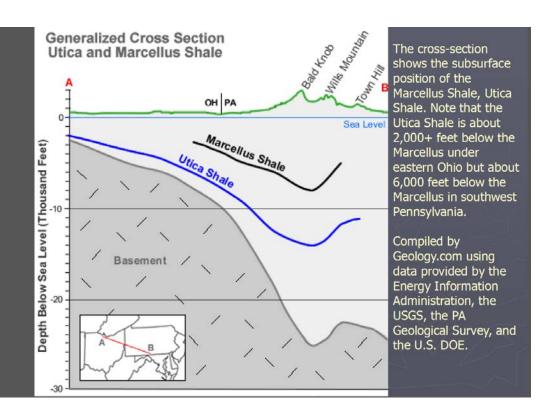

- US oil imports at 12,500 bbls/day
- Oil at \$120/bbl
 - \$50 mm/day
- 60% of US trade deficit was from oil imports.
- Peak Oil projected for 2025-2035.

o **2015**:

- US oil imports at 5,000 bbls/day
- Oil at \$38/bbl
 - \circ \$10 mm/day
- 10% of US trade deficit from oil imports.
- No projections on peak oil – nobody knows.

So why should we care about fuel cells?

Levin Urban.csuohio.edu Global Oil Production vs. Global Reserves



3

DEPTH OF MARCELLUS AND UTICA

Urban.csuohio.edu

Levin

Marcellus Recovery Projections:

65 TCF "proved reserves" 354 TCF "Total reserves" 480 TCF "Technically recoverable" **Utica Recovery Projections:** 38 TCF "technically recoverable" -**USGS 2012** (plus 940 mm bbls oil) 782 TCF – "technically recoverable" -Univ. West Virg. 2015 (plus 1.9 billion bbls oil)

Falling Costs of Hydrogen

Hydrogen drives 2.5 times as far as gasoline

- Toyota Highlander FCHV 68 m/kg
- Toyota Highlander hybrid 26 m/gal
- Hydrogen costs -- 2015
 - \$6-12/kg for renewable (electrolysis) - \$1.60 gge
 - \$4-5/kg steam reformed natural gas -- \$4.80 gge (H2carblog 2016)
- Problem: no where to fill up
 - California hydrogen is around \$12-16/kg at the pump.
 - o 19 cents/mile
 - Prius is 4.1 cents/mile (Edmunds 2016)

2016 Honda Clarity

Infrastructure Problem

- Duplicating existing gasoline filling infrastructure estimated at \$100 billion
 - $\,\circ\,\,$ But do not need every station to carry H2
 - Currently have to truck hydrogen to stations.
- Can put reformers at gasoline stations using natural gas to make hydrogen.
 - But is small scale reforming economic?
 - Solution: *begin with fleets*.

FCEV Fleets – First Adopters

- Resolves problem of refueling
 - Refueling stations at bus terminal
- Fuel Cell Bus Fleets
 - California
 - Europe
 - Asia

Levin

Urban.csuohio.edu

- Stark Area Regional Transit Authority (SARTA) – Canton, Ohio
 - 10 buses
 - El Dorado frame, Ballard PEM cells
 - Third largest operator of fuel cell buses in U.S.
- Reducing costs:
 - Currently around \$1.4 mm/bus.
 - Standard diesel bus is \$450,000, hybrid bus is \$550,000.

SARTA Hydrogen Refueling Station

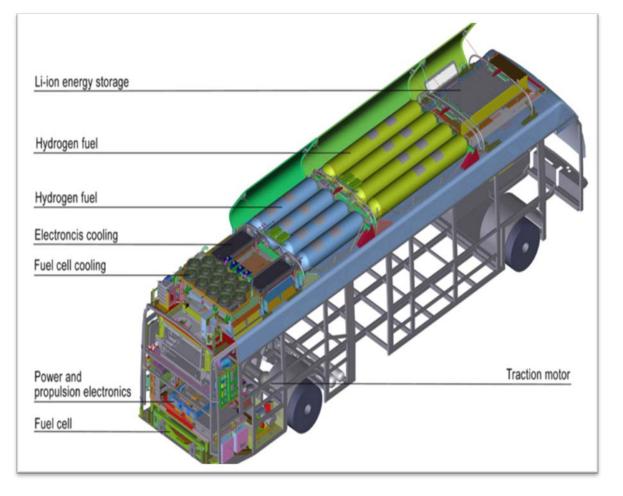
Midwest First Adopter: Stark Area Regional Transit Authority

"We want to be at the forefront of commercializing this technology because transit systems, businesses and private citizens will begin to utilize fuel cell-powered vehicles featuring components and technology developed and manufactured in Stark County."

Kirt Conrad, Executive Director, SARTA.

Levin Urban.csuohio.edu Fuel Cell Bus Fleet Performance Metrics

Performance of U.S. Fuel Cell Bus Fleet


	Units of Measurement	Fleet Average (2015)	2016 Target
Bus Lifetime	Years/Miles	3.6/81,108	12/500,000
Fuel Cell/Battery Lifetime	Hours	10,102	25,000
Bus Availability	% of days	73	90
Roadcall Frequency	Miles Between Roadcalls	4,280/20,531	4,000/20,000
(bus/fuel cell system)			
Operation time	Hours per day	11.8	20
Maintenance Cost	\$/mile	1.16	.40
Range	Miles	275	300
Fuel Economy	Miles per Diesel Gas Equivalent	6.8	8

Levin Urban.csuohio.edu

Fuel Cell Bus Design

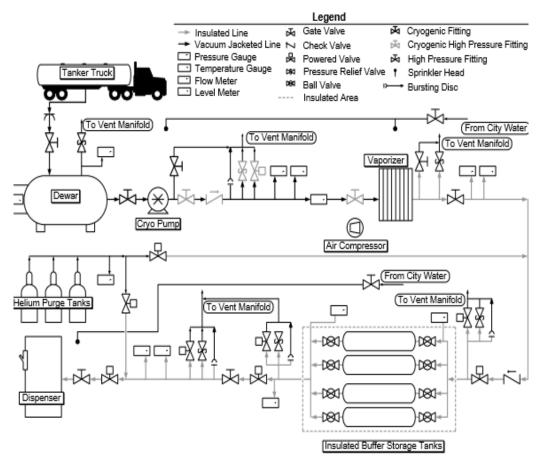
Key Components:

- Bus Chassis
- Electric Drive System
- PEM Fuel Cell
- Hydrogen Storage Tanks
- Lithium Ion Battery

Levin Urban.csuohio.edu Hydrogen Storage System on Roof

Relative Cost of Certain Fuel Cell Bus Components

|--|


Electric Drive System	m 60,000		4
Battery	4,000		1
PEM Cell	705,000		52
Storage	100,000		7
Base Vehicle	310,000	23	
Other	146,000		13
Total	1.4 mm		100

Source: CalStart (2016).

Levin Urban.csuohio.edu

Hydrogen Refueling Station

- 2016 23 US public refueling stations
- Cost: \$2-5 mm, depending upon size
- Steam reforming typically offsite, hydrogen trucked in.
- Key Components:
 - Cryogenic dewars (tanks)
 - Cryogenic pumps
 - Insulated pipes
 - Vaporizer
 - Solenoid, pressure regulator
 - Compressor
 - Nozzle, valves, hoses
 - Manifold
 - Safety equipment, sensors

Energy Policy Center

Andrew R. Thomas Levin College of Urban Affairs Cleveland State University <u>a.r.thomas99@csuohio.edu</u> 216 687 9304

