National Aeronautics and Space Administration

REACH HEIGHTS

BENEFIT HUMANKIND

REVEAL UNKNOWN

NASA Fuel Cell Related Research in Ohio

Presented by: Ian Jakupca

Ohio Fuel Cell Symposium and Workshop 30 March 2017

NASA Centers

NASA Activities In Ohio

Aviation

- Avionics
- Emissions
- Propulsion

Life Support

- Human Factors
- O₂ Recovery
- CO₂ Processing

Materials

- Ballistic Tolerance
- Surface Coatings
- New Materials

Propulsion

- Cryogenics
- LOX/CH₄
- LOX/LH

Power

- Fuel Cells
 - Batteries
 - Solar Arrays
 - Nuclear

Fuels

H₂/He Separation
Fuel Synthesis

NASA Activities In Ohio: Fuel Cell Power

Basic Research

- Electrodes
- Catalysts
- Electrolytes
- Electronics

Stack Design

Seals

Electronics and Instrumentation

Microstructures

NASA Activities In Ohio: Fuel Cell Power

Components

- Blowers
- Instrumentation
- Pumps
- Valves

Vehicle Sub-systems

- Electronics
- Software
- Integration
- Operations

Packaged Electronics

Additive Manufacturing

Operations

Integrated Systems

NASA Activities In Ohio: Fuel Cell Power

Electric Aviation

Applications

- Terrestrial
 - H₂/Air
 - Hydrocarbon/Air
- Aerospace
 - Air-independent (H_2/O_2)
 - Hydrocarbon/O₂

Autonomous Rovers

Space Vehicles

NASA Activities in Ohio: Electric Aircraft

- Integration of key (yet proven) technologies to yield compelling performance to early adopters
 - "Useful" payload, speed, range for point-to-point transportation
 - Energy system that uses infrastructure-compatible reactants, allowing for immediate integration
 - High efficiency for compelling reduction in operating cost
- Early adopters as gateway to larger commercial market

High-Performance Baseline

- 160-190 knots cruise on 130-190kW
- 1100+ pounds for motor & energy system

Efficient Powertrain

 Turbine-like power-to-weight ratio at 90+% efficiency

Hybrid Solid Oxide Fuel Cell Energy System

- >60% fuel-to-electricity efficiency
- Designed for cruise power;
 overdrive with moderate efficiency hit at takeoff and climb power

Primary Objective: **Demonstrate a 50% reduction in fuel cost** for an appropriate light aircraft cruise profile (payload, range, speed, and altitude).

Oxygen Recovery from Carbon Dioxide

Overall Oxygen Recovery Process

 $CO_2 \rightarrow C + O_2$

NASA Activities in Ohio: Fuel Synthesis

A *Green* Energy Application for SOE Co-Electrolysis: Manufacture of synthetic fuels from captured CO₂ and renewable energy

- Combined CO₂ and H₂O electrolysis produces CO and H₂, a basic feedstock in the chemical industry (referred to as synthesis gas, or "syngas")
- Syngas can be utilized to produce a wide variety of liquid hydrocarbons via the Fischer-Tropsch (F-T) process.
 - F-T process is a mature technology presently used to manufacture synthetic lubricants, etc.
 - Sasol (South Africa) produces gasoline and diesel fuel on a large scale via F-T.
- Recent review paper trade study concluded that synthetic gasoline could be produced for costs as low as \$2/gal.*
- Allows the "recycling" of atmospheric CO₂ while maintaining our present hydrocarbon fuel infrastructure.

Two possible CO₂-recycling scenarios:

- (a) CO2 recycled from industrial plant emissions (potential to reduce CO_2 net emissions by 50%).
- (b) Closed loop carbon recycling via CO₂ capture from Earth's atmosphere (near-zero net emissions).

* Study and above graphic from Graves et al., *Renewable and Sustainable Energy Reviews*, 15, (2011) 1-23.

NASA Activities in Ohio: H_2/He Processing

- Helium Supports various NASA Programs including:
 - Space Launch Systems (SLS)
 - Orion
 - NASA's Scientific Ballooning
- Helium supporting activities with Air Force and other customers under NASA reimbursable agreements, including:
 - ULA (Atlas V, Delta IV) launch support and engine testing
 - SpaceX (Falcon 9) launch support
- Helium used in both gaseous and liquid states for:
 - Purging hydrogen systems
 - Pressurization
 - Cooling
- NASA use peaked at ~130 million SCF for the Shuttle Program
- NASA usage estimated to remain between 70-90 million SCF annually

NASA Activities In Ohio: Fuel Cell Power in Space

Landers

Launch Vehicles

Lunar Outposts

Martian Outposts and Rovers

NASA Activities In Ohio: Safety

Basic Research

- Catalysts
- Combustion
- Electrodes
- Electrolytes
- Electronics
- Hydrogen*
- Oxygen*

Hydrogen Safety

Combustion

Operations

- Electrical Systems
- Fuel Transfers
- Hydrogen*
- Mobility Issues
- Oxygen*

Operations

NASA Glenn Research Center Technical Points of Contact

Aviation Electric Power: Nickolas Borer, <u>nicholas.k.borer@nasa.gov</u> Electrolysis:

- PEM: William R. Bennett, <u>william.r.bennett@nasa.gov</u>
- Solid Oxide: Robert Greene, <u>robert.d.green@nasa.gov</u>

 Fuel Cells:
 - PEM: Ian Jakupca, ian.j.jakupca@nasa.gov
 - Solid Oxide: Serene Farmer, <u>serene.c.farmer@nasa.gov</u>

Oxygen Recovery: Ken Burke, <u>kenneth.a.burke@nasa.gov</u> Materials and Coatings: James J. Zakrajsek, <u>james.j.zakrajsek@nasa.gov</u>

NASA is on a journey to Mars. This ambitious goal involves everything we do. It will transform technology and define our generation. National Aeronautics and Space Administration

National systematics and Space Adjunistration

REVEAL THE UNKNOWN

BENEFIT HUMANKIND

www.nasa.gov