Battelle Vince Contini Fritz Eubanks Mike Heinrichs Manoj Valluri Mike Jansen Paul George Mahan Mansouri

Manufacturing Cost Analyses of Fuel Cell Systems for Primary Power and Combined Heat and Power Applications

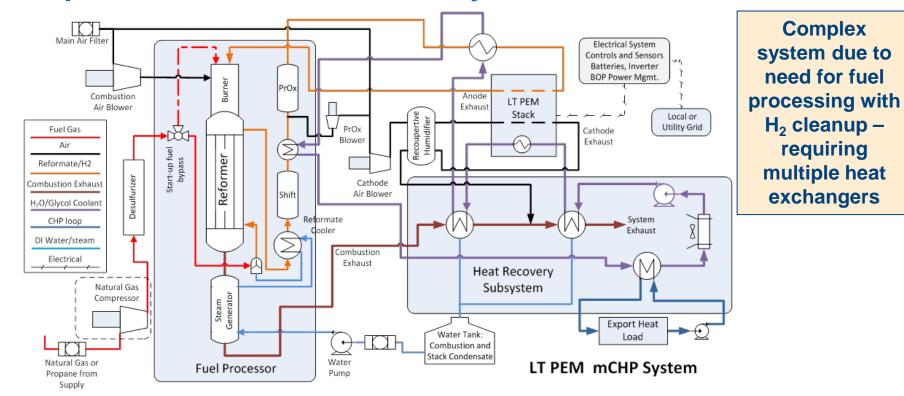
3/31/2017

Outline

- Approach
- Design Basis
- Representative Systems
- PEM System Costs
 - BOP
 - Stack
 - Total
- SOFC System Costs
 - BOP
 - Stack
 - Total
 - Sensitivity Analysis
- Summary/Conclusions

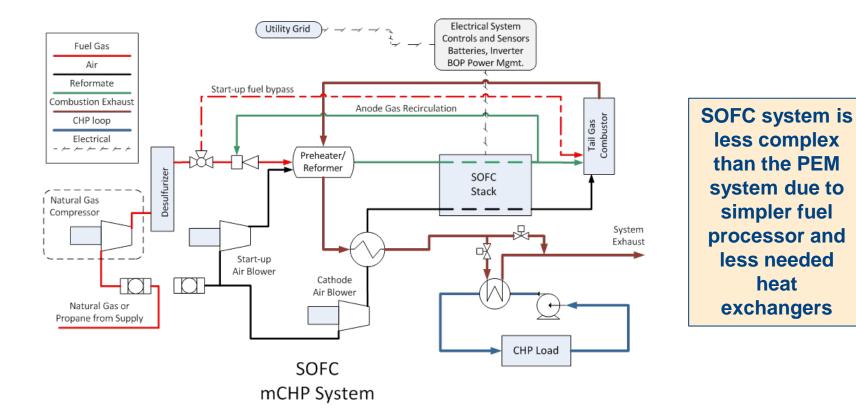
Approach – Manufacturing Cost Analysis Methodology

Market Assessment	System Design	Cost Modeling	Sensitivity & Life Cycle Cost Analysis
 Characterization of potential markets Identification of operational and performance requirements Evaluation of fuel cell technologies relative to requirements Selection of specific systems for cost modeling 	 Conduct literature search Develop system design Gather industry input Size components Gather stakeholder input Refine design Develop bill of materials (BOM) Define manufacturing processes Estimate equipment requirements 	 Gather vendor quotes Define material costs Estimate capital expenditures Determine outsourced component costs Estimate system assembly Develop preliminary costs Gather stakeholder input Refine models and update costs 	 Sensitivity analysis of individual cost contributors Life cycle cost analysis to estimate total cost of ownership


Primary Power/CHP Nominal Design Basis

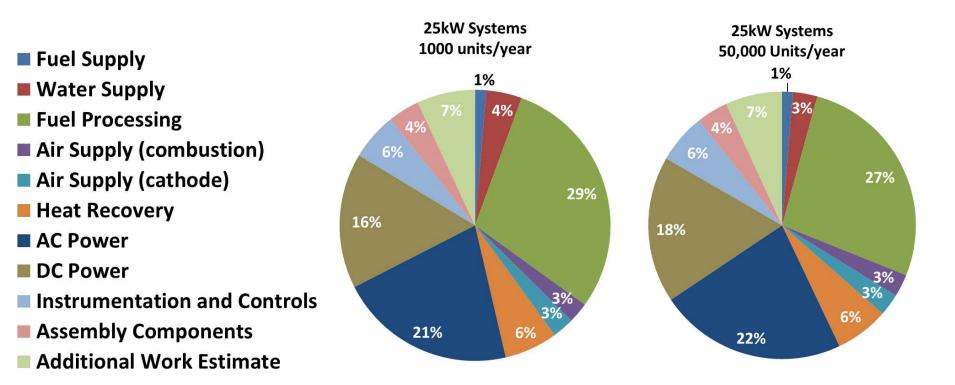
Metric/Feature	Objective
Input, Fuel	Utility Natural Gas or Propane
	(>30 psig preferred)
Input, Air	Ambient air (-20° to 50°C)
Input, Other	N/A
Output	120/240 VAC
	480 VAC 3-phase optional
Net Power Output	1, 5, 10, 25, 100, 250 kW
System Efficiency (electrical)	
LTPEM	30%
SOFC	40%
System Efficiency Overall	
LTPEM	80%
SOFC	90%
System Life	50,000 hours
System Maintenance Interval	1.000
(filter change: sulfur trap, air filter, fuel filter)	1 year
Grid Connection	Yes, local and/or utility
Operate off-grid	Yes, critical load back-up
Start off-grid	No

Material presented here will concentrate on 25 and 250 kW systems



Representative LTPEM CHP system

Representative SOFC CHP system

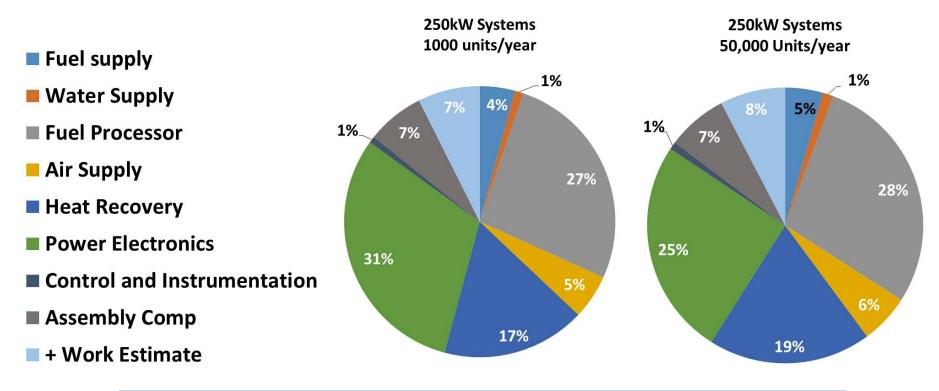

25-kW CHP PEM BOP Cost

	25 kW					
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)		
Fuel Supply	\$1,782	\$646	\$553	\$508		
Water Supply	\$2,267	\$2,083	\$1,495	\$1,164		
Fuel Processing	\$19,140	\$14,355	\$11,813	\$10,537		
Air Supply (Combustion)	\$1,311	\$1,198	\$1,106	\$1,069		
Air Supply (Cathode)	\$1,550	\$1,270	\$1,098	\$1,045		
Heat Recovery	\$4,198	\$3,109	\$2,715	\$2,545		
AC Power	\$11,150	\$10,321	\$9,555	\$8,899		
DC Power	\$10,638	\$7,900	\$7,283	\$6,970		
Instrumentation and Control	\$3,068	\$2,762	\$2,495	\$2,357		
Assembly Components	\$2,019	\$1,836	\$1,652	\$1,485		
Additional Work Estimate	\$4,300	\$3,400	\$2,900	\$2,700		
BOP Total	\$61,423	\$48,879	\$42,665	\$39,279		

BOP has several significant contributors, particularly for the PEM systems – most notably, the fuel processing and AC & DC Power

25-kW CHP PEM BOP Cost Distribution

BOP has several significant contributors, particularly for the PEM systems – most notably, the fuel processing and AC & DC Power – a hybrid 3-port DC/AC inverter has potential to lower cost of power equipment

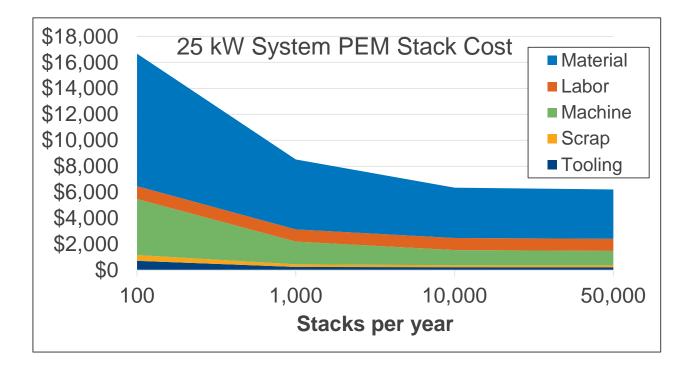

250-kW CHP PEM BOP Cost

		250	kW	
BOP Components	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Fuel Supply	\$14,879	\$12,452	\$11,166	\$10,358
Water Supply	\$3,340	\$3,144	\$3,023	\$2,915
Fuel Processing	\$94,462	\$79,221	\$70,458	\$66,491
Air Supply	\$17,254	\$15,851	\$14,473	\$13,607
Heat Recovery	\$56,215	\$51,218	\$46,680	\$44,665
Power Electronics	\$114,436	\$91,898	\$72,617	\$59,454
Instrumentation and Control	\$2,622	\$2,340	\$2,108	\$2,055
Assembly Components	\$22,540	\$20,490	\$18,440	\$16,600
Additional Work Estimate	\$24,300	\$22,100	\$19,900	\$17,900
BOP Total	\$350,048	\$298,714	\$258,865	\$234,045

BOP has several significant contributors– most notably, AC & DC Power – fuel processing is less significant than for PEM systems

250-kW CHP PEM BOP Cost Distribution

BOP has several significant contributors, particularly for the PEM systems – most notably, the fuel processing and AC & DC Power – a hybrid 3-port DC/AC inverter has potential to lower cost of power equipment

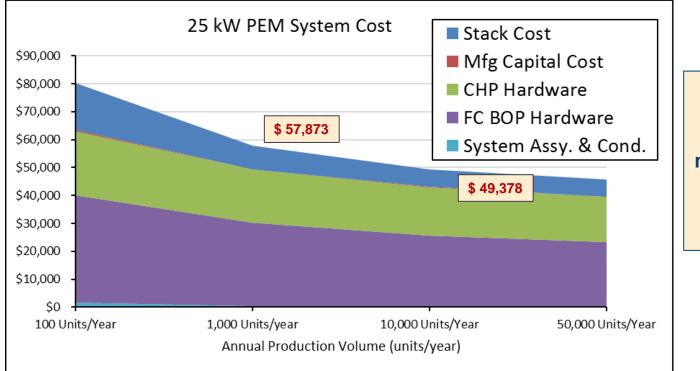

25-kW CHP PEM Stack Manufacturing Cost

	25 kW System					
Stack Components	100	1,000	10,000	50,000		
	Units	Units	Units	Units		
MEA	\$10,288	\$5,266	\$3,624	\$3,515		
Anode / Cooling Gasket	\$508	\$304	\$240	\$238		
Cathode Gasket	\$179	\$81	\$65	\$65		
Anode Bipolar Plate	\$1,986	\$1,229	\$1,065	\$1,064		
Cathode Bipolar Plate	\$1,905	\$1,148	\$983	\$983		
End plates	\$111	\$58	\$53	\$35		
Assembly hardware	\$94	\$88	\$82	\$78		
Assembly labor	\$158	\$126	\$123	\$123		
Test and conditioning	\$1,445	\$227	\$120	\$116		
Total	\$16,674	\$8,527	\$6,354	\$6,217		
Cost per kW _{net}	\$667	\$341	\$254	\$249		

The catalyst, membrane and gas diffusion layer (GDL) all contribute to make the membrane electrode assembly (MEA) the largest contributor to stack cost

25-kW CHP PEM Fuel Cell Stack Volume Trend

Material cost is the highest contributor at all production levels

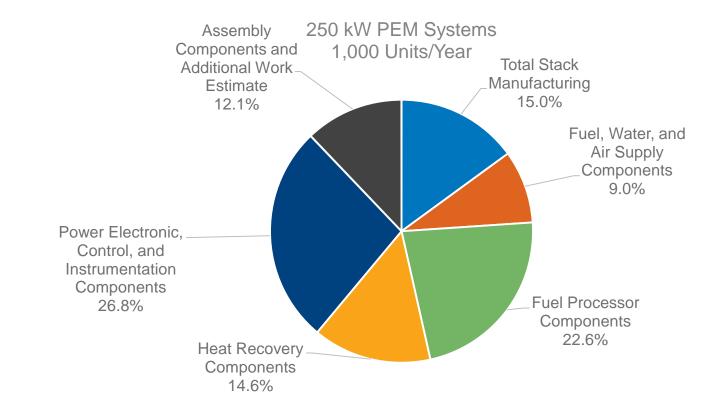

25-kW CHP PEM Fuel Cell System Cost Summary

Description	100 Units	1,000 Units	10,000 Units	50,000 Units
Total stack manufacturing cost, with scrap	\$16,674	\$8,527	\$6,354	\$6,217
Stack manufacturing capital cost	\$567	\$101	\$65	\$64
CHP Hardware	\$22,817	\$18,890	\$17,356	\$16,329
FC BOP Hardware	\$38,606	\$29,990	\$25,309	\$22,950
System assembly, test, and conditioning	\$1,558	\$365	\$293	\$293
Total system cost, pre-markup	\$80,221	\$57,873	\$49,378	\$45,852
System cost per net KW, pre-markup	\$3,209	\$2,315	\$1,975	\$1,834
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$120,332	\$86,809	\$74,067	\$68,779
System cost per net KW, with markup	\$4,813	\$3,472	\$2,963	\$2,751

BOP dominates system cost for all capacities and volumes examined

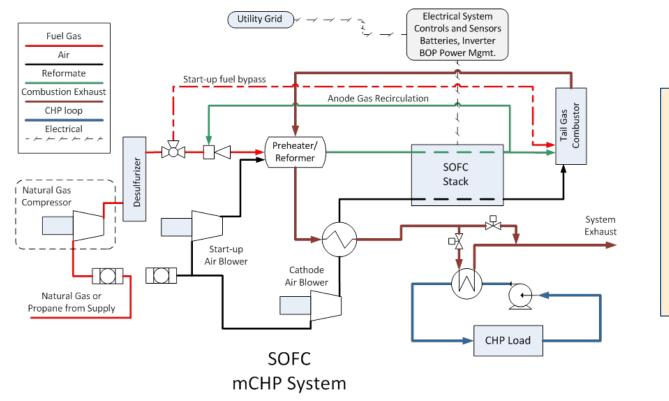
25-kW PEM System Cost - Volume Trend

BOP contribution to cost is even more substantial as production volume increases


250-kW CHP PEM Fuel Cell System Cost Summary

Description	100 Units	1,000 Units	10,000 Units	50,000 Units
Total stack manufacturing cost, with scrap	\$70,197	\$52,589	\$50,432	\$50,009
Fuel, Water, and Air Supply Components	\$35,472	\$31,447	\$28,662	\$26,881
Fuel Processor Components	\$94,462	\$79,221	\$70,458	\$66,491
Heat Recovery Components	\$56,215	\$51,218	\$46,680	\$44,665
Power Electronic, Control, and Instrumentation Components	\$117,058	\$94,238	\$74,725	\$61,509
Assembly Components and Additional Work Estimate	\$46,840	\$42,590	\$38,340	\$34,500
Total system cost, pre-markup	\$420,245	\$351,303	\$309,297	\$284,054
System cost per net KW, <mark>pre-markup</mark>	\$1,681	\$1,405	\$1,237	\$1,136
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$630,367	\$526,954	\$463,945	\$426,081
System cost per net KW, with markup	\$2,521	\$2,108	\$1,856	\$1,704

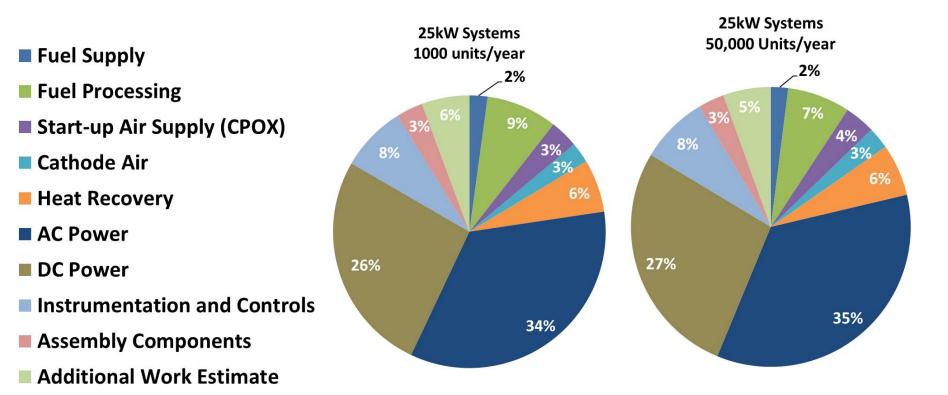
BOP dominates system cost for all capacities and volumes examined



250-kW CHP PEM Fuel Cell System Cost Distribution (1,000 units per year)

Representative SOFC CHP system

SOFC system is less complex than the PEM system due to simpler fuel processor and less needed heat exchangers

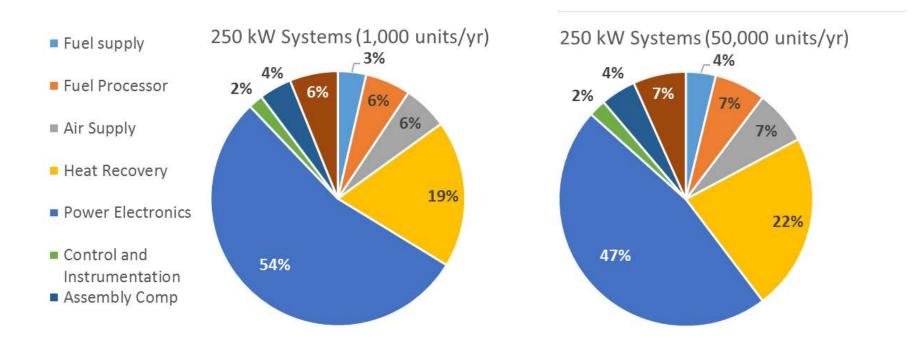

25-kW CHP SOFC BoP Cost

		25	kW	
BoP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Fuel Supply	\$1,782	\$646	\$553	\$508
Fuel Processing	\$3,686	\$2,531	\$1,933	\$1,847
Start-up Air Supply (CPOX)	\$1,094	\$1,004	\$931	\$899
Cathode Air	\$816	\$735	\$661	\$641
Heat Recovery	\$2,376	\$1,881	\$1,618	\$1,532
AC Power	\$11,150	\$10,321	\$9,555	\$8,898
DC Power	\$10,638	\$7,900	\$7,283	\$6,970
Instrumentation and Control	\$2,993	\$2,346	\$2,123	\$2,006
Assembly Components	\$1,047	\$951	\$854	\$770
Additional Work Estimate	\$2,100	\$1,700	\$1,500	\$1,400
BOP Total	\$37,682	\$30,014	\$27,011	\$25,471

BOP has several significant contributorsmost notably, AC & DC Power fuel processing is less significant than for PEM systems

25-kW SOFC BOP Cost Distribution

AC & DC Power contribute even more significantly than for the PEM system as other costs are lower – a hybrid 3-port DC/AC inverter has potential to lower cost of power equipment


250-kW CHP SOFC BOP Cost

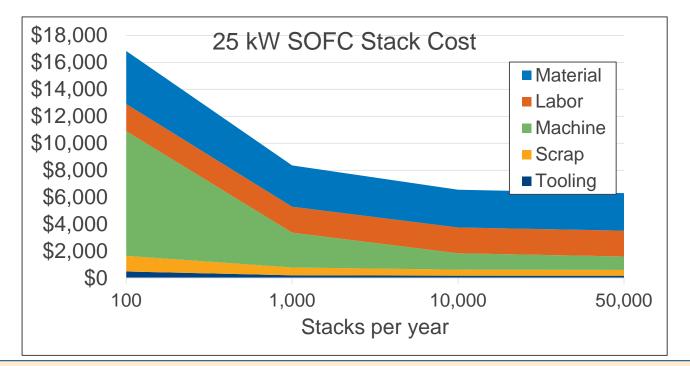
		250	kW	
BOP Components	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Fuel Supply	\$7,953	\$6,093	\$5,372	\$4,815
Fuel Processing	\$14,347	\$9,797	\$8,604	\$8,253
Air Supply	\$10,345	\$9,607	\$8,937	\$8,741
Heat Recovery	\$33,857	\$31,718	\$29,718	\$28,470
Power Electronics	\$114,436	\$91,898	\$72,617	\$59,454
Instrumentation and Control	\$ 3,526	\$ 3,152	\$2,836	\$ 2,763
Assembly Components	\$7,710	\$7,010	\$6,310	\$5,680
Additional Work Estimate	\$11,400	\$10,400	\$9,400	\$8,500
BOP Total	\$203,575	\$169,675	\$143,793	\$126,677

BOP has several significant contributorsmost notably, AC & DC Power fuel processing is less significant than for PEM systems

250-kW SOFC BOP Cost Distribution

BOP has several significant contributors, particularly for the PEM systems – most notably AC & DC Power and heat recovery – the hybrid 3-port DC/AC inverter lowers cost of power equipment, but it is still significant

SOFC Stack Manufacturing Cost – 25kW System

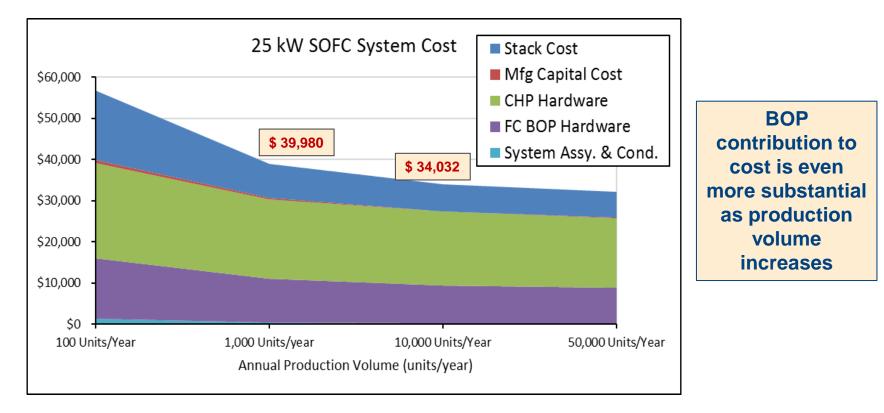

		25 kW System					
Stack Components	100 Units (\$/each)	1,000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)			
Ceramic Cells	\$4,828	\$3,395	\$2,766	\$2,650			
Interconnects	\$1,109	\$870	\$495	\$444			
Anode Frame	\$434	\$370	\$363	\$357			
Anode Mesh	\$365	\$275	\$191	\$189			
Cathode Frame	\$180	\$121	\$115	\$111			
Cathode Mesh	\$380	\$286	\$199	\$196			
Picture Frame	\$212	\$135	\$128	\$123			
Laser Weld	\$1,444	\$168	\$112	\$112			
Glass Ceramic Sealing	\$3,890	\$655	\$401	\$373			
End Plates	\$822	\$720	\$644	\$643			
Assembly Hardware	\$229	\$214	\$200	\$191			
Assembly Labor	\$266	\$212	\$207	\$206			
Stack Brazing	\$98	\$81	\$67	\$50			
Test and Conditioning	\$2,589	\$856	\$668	\$656			
Total Cost	\$16,848	\$8,358	\$6,555	\$6,302			
Cost per kW _{net}	\$674	\$334	\$262	\$252			

Machine utilization leads to significant cost reductions for processing steps such as laser weld and sealing while ceramic cells remain high due to machine time (kiln firing process and screen printing)

All costs include manufacturing scrap

SOFC Fuel Cell Stack Volume Trend

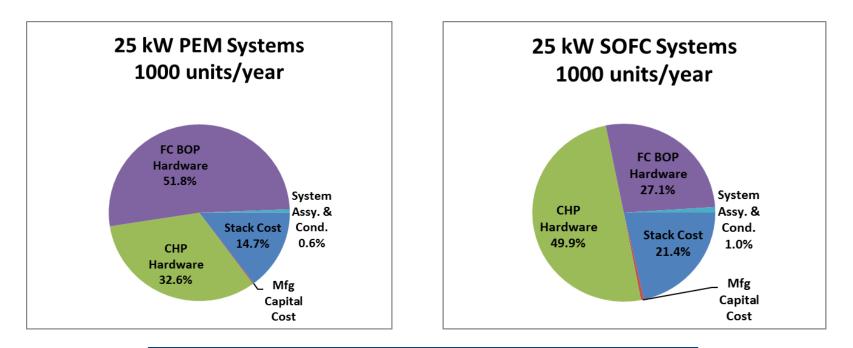
Costs more evenly spread for SOFC Stacks between material, labor and machine costs –with machine cost dominating at low volume


25 kW CHP SOFC Fuel Cell System Cost Summary

BOP Components	100 Units (\$/each)	1000 Units (\$/each)	10,000 Units (\$/each)	50,000 Units (\$/each)
Total stack manufacturing cost, with scrap	\$16,848	\$8,358	\$6,555	\$6,302
Stack manufacturing capital cost	\$748	\$209	\$135	\$126
CHP Hardware	\$23,134	\$19,433	\$17,939	\$16,939
FC BOP Hardware	\$14,548	\$10,581	\$9,073	\$8,532
System assembly, test, and conditioning	\$1,428	\$399	\$330	\$330
Total system cost, pre-markup	\$56,706	\$38,980	\$34,032	\$32,229
System cost per KW _{net} , pre- markup	\$2,268	\$1,559	\$1,361	\$1,289
Sales Markup	50%	50%	50%	50%
Total system price, with markup	\$85,059	\$58,470	\$51,048	\$48,344
System price per KW _{net} , with markup	\$3,402	\$2,339	\$2,042	\$1,934

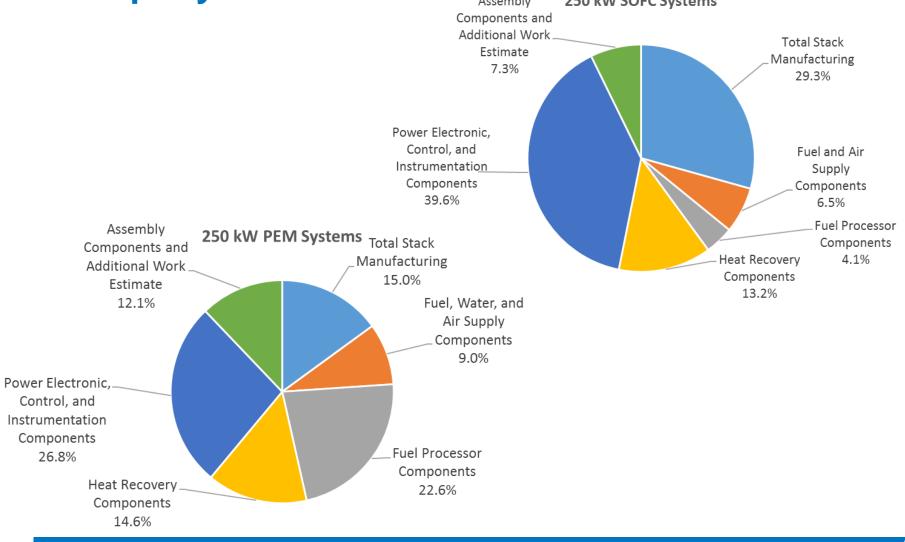
BOP dominates system cost for all capacities and volumes examined

25 kW SOFC CHP System Cost - Volume Trend

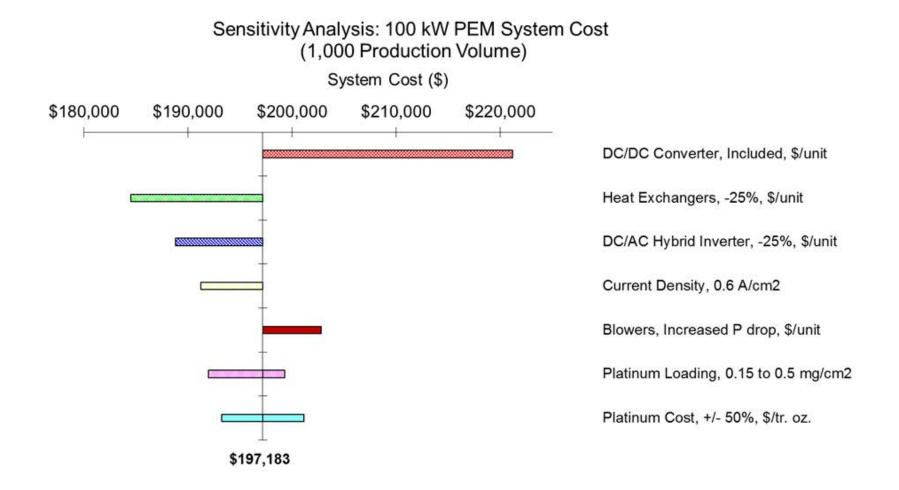

250-kW CHP SOFC Fuel Cell System Cost Summary

Description	100 Units	1,000 Units	10,000 Units	50,000 Units
Total stack manufacturing cost, with scrap	\$87,497	\$70,430	\$66,665	\$66,327
Fuel, Water, and Air Supply Components	\$18,298	\$15,700	\$14,309	\$13,556
Fuel Processor Components	\$14,347	\$9,797	\$8,604	\$8,253
Heat Recovery Components	\$33,857	\$31,718	\$29,718	\$28,470
Power Electronic, Control, and Instrumentation Components	\$117,962	\$95,050	\$75,453	\$62,217
Assembly Components and Additional Work Estimate	\$19,110	\$17,410	\$15,710	\$14,180
Total system cost, pre-markup	\$291,072	\$240,105	\$210,458	\$193,004
System cost per net KW, <mark>pre-markup</mark>	\$1,164	\$960	\$842	\$772
Sales markup	50%	50%	50%	50%
Total system cost, with markup	\$436,608	\$360,157	\$315,686	\$289,505
System cost per net KW, with markup	\$1,746	\$1,441	\$1,263	\$1,158

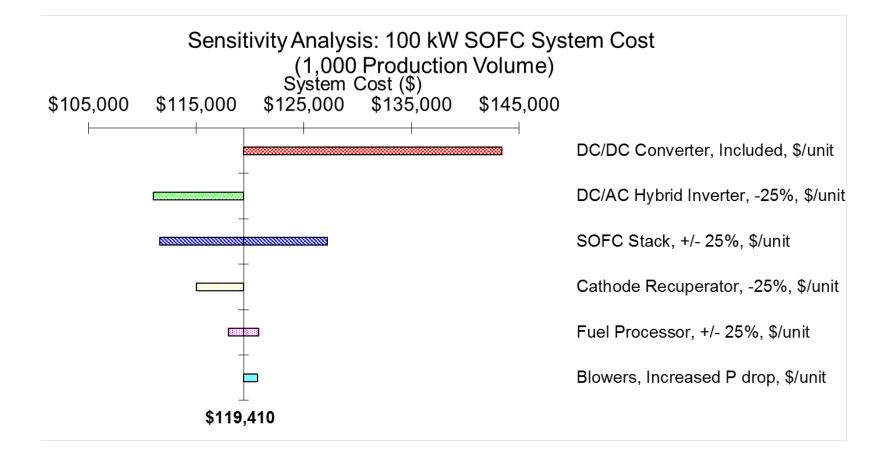
BOP dominates system cost for all capacities and volumes examined


CHP Fuel Cell System Cost Comparison

For both technologies, BOP (including CHP hardware) dominates – more significant for the PEM systems



250-kW PEM and SOFC system costs at 1,000 units per year Assembly 250 kW SOFC Systems

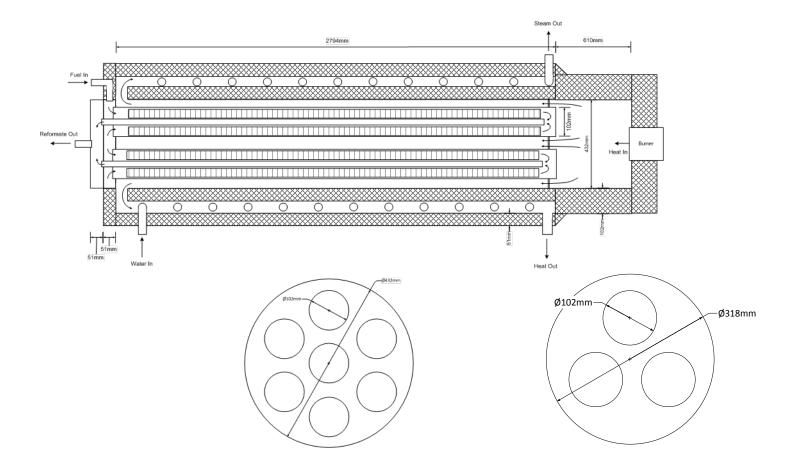


Sensitivity Analysis: 100-kW PEM Systems

Sensitivity Analysis: 100-kW SOFC Systems

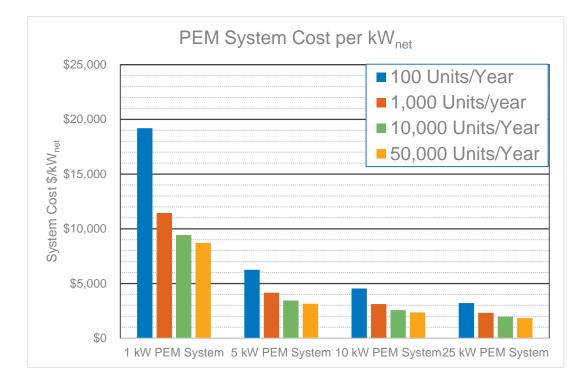
Summary

- BOP dominates system cost
- Within BOP, hardware directly related to connecting to the grid represents major portion of cost for both PEM and SOFC systems
- Recently developed hybrid inverters eliminate need for separate DC/DC Converter – though power electronics still represent the highest cost system component
- Heat exchangers, particularly high temperature, also represent a major portion of the BOP
- Attractive value proposition shown for locations where electricity prices are high and natural gas prices low
- For greater detail on these studies, please refer to the reports posted on the DOE EREE website.

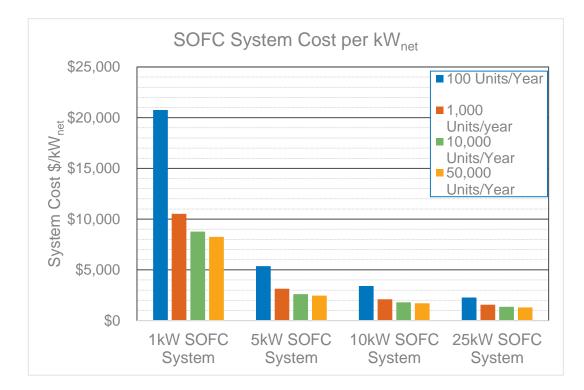


800.201.2011 | solutions@battelle.org | www.battelle.org

Backup Slides



Seven-tube 250-kW reformer configuration and three-tube 100-kW reformer configuration



CHP PEM Fuel Cell System Cost Comparison

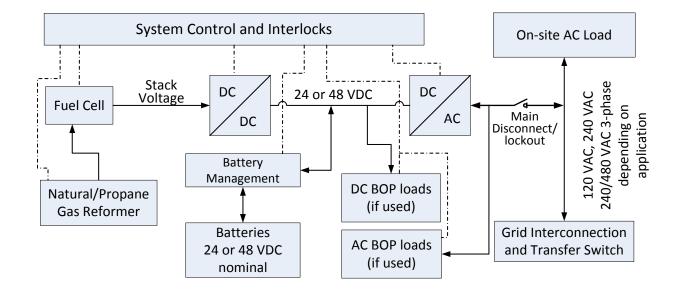
CHP SOFC Fuel Cell System Cost Comparison

PEM Fuel Cell Design Parameters

Parameter	1 kW	5 kW	10 kW	25 kW	
Power Density (W/cm ²)	0.27				
Current Density (A/cm ²)	0.4				
Cell Voltage (VDC)	0.68				
Active Area Per Cell (cm ²)		200	4(00	
Net Power (kW)	1	5	10	25	
Gross Power (kW)	1.2	6	12	30	
Number of Cells (#)	22	110	110	276	
Full Load Stack Voltage (VDC)	15	75	75	188	
Membrane Base Material	PFSA, 0.2mm thick, PTFE reinforced				
Catalyst Loading	0.4 mg Pt/cm2 (total)				
	Cathode is 2:1 relative to Anode				
Catalyst Application	dried, decai transfer				
Gas diffusion layer (GDL) Base Material	Carbon paper 0.2 mm thick				
GDL Construction	Carbon paper dip-coated with PTFE for water				
	management				
Membrane electrode assembly (MEA) Construction	Hot press and die cut				
Seals	1 mm silicone, infection molded				
Stack Assembly	Hand assembled, tie rods				
Bipolar Plates	Graphite composite, compression molded				
End Plates	Die cast and machined A356 aluminum				

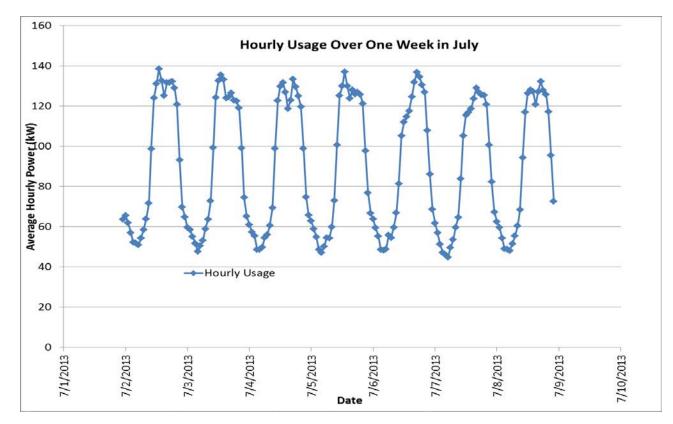
SOFC Fuel Cell Design Parameters

Parameter	1 kW	5 kW	10 kW	25kW
Cell Power Density (W/cm ²)	0.32			
Cell Current Density (A/cm ²)	0.4			
Cell Voltage (VDC)	0.7			
Active Area Per Cell (cm ²)	200	200	400	400
Rated Net Power (kW, continuous)	1	5	10	25
Rated Gross Power (kW, continuous)	1.2	6	12	30
Number of Cells (#)	21	107	107	268
Open Circuit Voltage (VDC)	24	118	118	295
Full Load Stack Voltage (VDC)	15	75	75	188
Cell Design	Planar, Anode supported			
Anode Material	Ni-8YSZ, 250 µm thick			
Anode Application	Tape cast, kiln fire			
Anode Active Layer Material	NI-YSZ, 15 µm thick			
Anode Active Layer Application	Screen Print, kiln fire			
Anode Contact Layer Material	NI-YSZ, 10 μm thick			
Anode Contact Layer Application	Screen Print, kiln fire			
Electrolyte Material	8YSZ, 8 μm thick			
Electrolyte Application	Screen print, kiln fire			



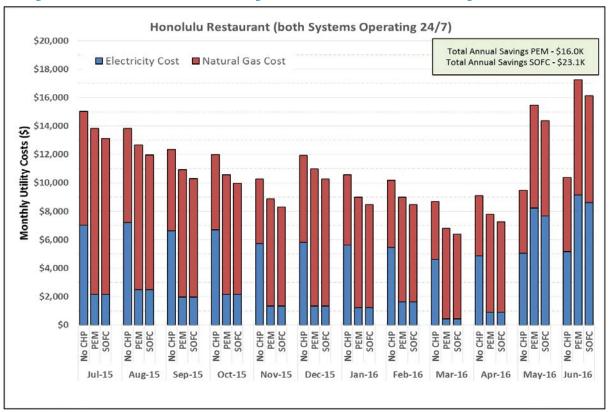
SOFC Fuel Cell Design Parameters

Parameter	
Cathode Active Layer Material	YSZ/LSM, 5µm thick
Cathode Active Layer Application	Screen Print, kiln fire
Cathode Material	LSCF, 30 µm thick
Cathode Application	Screen Print, kiln fire
Cathode Contact Layer Material	LSM/YSZ, 10 µm thick
Cathode Contact Layer Application	Screen Print, kiln fire
Seals	Wet application bonded glass/ceramic
Stack Assembly	Hand Assembled, tie rods, furnace brazed
Interconnects	Ferritic Stainless Steel (SS-441) with
	Perovskite coating, 2-3 µm thick
End Plates	Die Cast and Machined A560 Steel

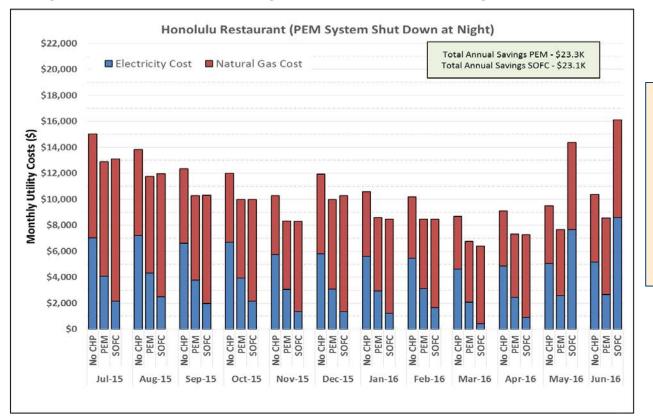


Primary Power/CHP Electrical System Schematic

Life Cycle Cost Analysis Assumptions – Restaurant in Southern California


Life Cycle Cost Analysis – 25kW System

Significant annual savings on utilities for San Diego restaurant due to high electricity costs


Life Cycle Cost Analysis – 25kW System

Even with high cost of natural gas in Hawaii, still significant savings resulting from CHP system is heat load is substantial

Life Cycle Cost Analysis – 25kW System

PEM systems benefit even more from shutting down when the restaurant is not open for business

Life Cycle Cost Analysis

PEM – 1,000 units/year	Fuel Cell	Utilities Only	SOFC – 1,000 units/year	Fuel Cell	Utilities Only
Cost of System	\$86,809	N/A	Cost of System	\$58,470	N/A
Installation Cost	\$10,000	N/A	Installation Cost	\$10,000	N/A
Annual Cost of Capital (10%)	\$24,683	N/A	Annual Cost of Capital (10%)	\$17,457	N/A
Annual Consumables	\$1,252	N/A	Annual Consumables	\$521	N/A
Annual O & M Costs	\$750	N/A	Annual O & M Costs	\$750	N/A
Annual Electricity Utility Cost	\$96,028	\$143,226	Annual Electricity Utility Cost	\$96,028	\$135,427
Annual Gas Utility Cost	\$32,373	\$22,184	Annual Gas Utility Cost	\$31,663	\$26,290
Annual Total	\$155,087	\$165,410	Annual Total	\$146,420	\$161,717
Annual Savings	\$10,323		Annual Savings	\$18,990	


PEM – 10,000 units/year	Fuel Cell	Utilities Only	SOFC – 10,000 units/year	Fuel Cell	Utilities Only
Cost of System	\$74,067	N/A	Cost of System	\$51,048	N/A
Installation Cost	\$10,000	N/A	Installation Cost	\$10,000	N/A
Annual Cost of Capital (10%)	\$21,434	N/A	Annual Cost of Capital (10%)	\$15,586	N/A
Annual Consumables	791.15	N/A	Annual Consumables	\$460	N/A
Annual O & M Costs	\$750	N/A	Annual O & M Costs	\$750	N/A
Annual Electricity Utility Cost	\$96,028	\$143,226	Annual Electricity Utility Cost	\$96,028	\$135,427
Annual Gas Utility Cost	\$32,373	\$22,184	Annual Gas Utility Cost	\$31,663	\$26,290
Annual Total	\$151,377	\$165,410	Annual Total	\$144,487	\$161,717
Annual Savings	\$14,033		Annual Savings	\$20,922	

Annual savings after all costs are taken into consideration

*Annual cost comparison when using CHP system in San Diego Restaurant with a Production Volume of 1,000 or 10,000 Units per Year

Favorable payback period and return on investment – but does require significant production volumes

*Cumulative cash flows for PEM and SOFC systems with production volumes of 1,000 and 10,000 units/year in the San Diego store

