

Bipolar Plate Cost and Issues at High Production Rate

Brian D. James Jennie M. Huya-Kouadio Cassidy Houchins

DOE Workshop on Research and Development Needs for Bipolar Plates for PEM Fuel Cell Technologies

14 February 2017 Southfield, Michigan

Bipolar Plate (BPP) Presentation Outline

- Overview of Recent Activities
- BPP Cost Breakdown
- Factors that Affect BPP Cost
- Issues and Limitations
 - Forming, Coating, Joining
- Ideal BPP Operation
- GLWN Report Findings
 - Observations
 - Supply Chain Readiness and Potential
 - Actions to Improve Competitiveness

Recent Activities

- Design for Manufacture and Assembly (DFMA) Studies
 - Annual SA reports on 80kWe (auto) and 160kWe (bus) systems
 - Identify a manufacturing process train detailing the specific materials, machinery, labor, utilities, and processing conditions
 - BPP analyses:
 - Forming Metal Plates
 - Progressive Stamping, Conventional Hydroforming, Borit's Hydrogate[™] Process (hydroforming)
 - Coating
 - TreadStone Gen 1-3(PVD process), Amorphous Carbon (on Ti & SS), Au Nanoclad
 - Sealing/Joining
 - Laser welding

• Supply Chain & US Competitiveness Analysis

- Team: GLWN (Prime), SA, E4Tech, DJW Technology
- 35 interviews with OEMs and Suppliers
- Report: U.S. Clean Energy Hydrogen and Fuel Cell Technologies: A Competitiveness Analysis
 - Global Fuel-Cell Trade-flows
 - Supply Chain Evolution
 - Global Component Cost Comparison
 - Global Supply Chain Strategies
 - US Competitiveness Analysis and Suggested Actions

Draft report with DOE for review

5/9/2017

4

Wide range in OEM/Supplier BPP Price Estimates

(SA cost estimates for stamped SS316 plates from SA 2015 Cost Analysis Report)

Cost uncertainty may stem from misalignment of reporting:

- Does cost include forming, coating, and joining?
- Does it include gaskets?
- At what production rate?
- Costs quoted in \$/kW but at what power density?
- Costs quoted in \$/plate but at what plate size an active/total area ratio?
- Per BPP or BPP assembly?

Factors that Affect BPP Cost

- Forming
 - Material
 - SS316(\$3.50/kW_{net}), SS304, titanium, carbon
 - Power Density & Active/Total Area Ratio
 - Plate Design
 - Flow Field Design
 - Fine Features (<1mm)
 - Course Features (>2mm)
 - "Fine Mesh" (Toyota)
 - Forming Force (1,000 to 2,000 tons)
 - Cost correlates with force
 - Strokes/min correlates with force
 - Coining vs. Bending

- Coating
 - Cycle time
 - Use of precious metals

- Sealing/Joining (of the two BPP halves)
 - Cycle time
 - Matching rates with forming and coating

Quality Control and Leak Testing

SA Projected High Volume Process

DFMA studies based on:

- SS 316L metal plates
- Progressive die stamping
- Laser welding

5/9/2017

7

• Treadstone PVD coating (outer faces of welded assembly)

GLWN Study found:

- Metal plates expected to dominate for auto FCVs
- Europe leads in BPP technology
- Coatings can be pre or post forming
- Laser welding most prevalent
 - Toyota is exception
- Concerns about welding and coating times and costs

SA's Baseline BPP Manufacturing Process Steps

SA Projected High Volume Cost Estimate

This is unsatisfactory. Need a faster process!

2016 Baseline Estimate

- 380M Plates/year (500k vehicles/year)
- (110) simultaneous processing lines needed for forming (30 lines if 24/7, no roll change-out time)
- Materials/manufacturing only (no markup included in estimate)
- \$8/kWnet, ~30% of FC stack cost
- ~\$3.40/kWnet (stamping only)

GLWN Project Interviewees report that parallel production lines are undesirable/unacceptable due to quality control concerns.

Stamping vs. Hydrogate Parameters

	SA Baseline (5-stage Progressive Die Stamping)	Borit Hydrogate
Plate Active Area	312 cm ²	312 cm ²
Plate Total Area	500 cm ²	500 cm ²
Plates per stamp	1	4
BPP Forming Force	16,000kN or 1,600 tons	41,200 kN or 4,200 tons (2,000 bar over active area)
Plate Material	316SS, 3 mils	316SS, 3 mils
Forming Machine Capital Cost	\$1.8M (Prog. Stamp) \$2.1M total system	\$1M (Hydrogate) \$89k (Cutting Press) \$1.2M total system
Forming Rate	2.47sec per plate	7.5 sec per 4 plates (1.88 sec/plate)
Labor	0.25 workers per press (min)	0.25 workers per press (min) (oversees Hydrogate & stamping)
Stamping Die Set Lifetime	10M cycles	10M cycles (Cutting die)
Stamping Die Set Cost	\$662k	\$100k (Cutting die)
Hydrogate Die Set Lifetime	Not applicable	10M cycles
Hydrogate Die Cost	Not applicable	\$60k

107 h 100 H 10

9

Issues and Limitations with Current Forming Methods

- **Progressive Stamping**
 - Difficult to maintain flatness for laser welding
 - +/-5µm tolerances (possibly requiring temp controlled room)
 - More complex flow fields require higher press force
 - Slower cycle time (2.5 sec/plate)
 - Higher capital cost (~ \$1k/ton)
 - High tooling cost (>\$600k, 1,000s of hours to fabricate)
 - High # of simultaneous lines to meet capacity (100+)
 - BPP geometry limited by wall thinning issue **Concern**
- Hydroforming
 - Must form more than 4 parts simultaneously to meet capacity (70+ lines for 4 parts/form) <

Requires extra stamping to cut manifold holes and parts separation

GLWN project reports that only a few worldwide companies have capacity to be credible high-volume **BPP supplier to OEM**

Multiple parts per operation appears to be key step in improving cost and cycle time

Coating of Metal Bipolar Plate

Coating

- Two Purposes
 - Increase Conductivity
 - Anti-Corrosion

Approaches

- Sub-Atmospheric/Vacuum Deposition
 - TreadStone Gen 1-3 (PVD process)
 - ImpactCoating (PVD)
 - PECVD Amorphous Carbon (on Ti plates for Toyota)
- Atmospheric Deposition
 - Nitriding (ORNL)
- Special alloys
 - Custom alloys with innate corrosion resistance
- Liquid processes
 - Pickling
 - Polymer Matrix (Dana Reinz patents*)
- Others?

<u>Issues</u>

- Cycle time
 - ~2- 30 minutes
- Batch vs. Continuous
 - Parts per batch
 - a few to 100's of parts
 - Can process be continuous?
- Sputtering Targets
 - Can add surprising amount of cost (beyond material price)

* US Patent 8,053,141 B2 (2011), DE Patent Application 10235598 A1 (2002), DE Patent Grant 10235598 B4 (2005)

Metal BPP Joining Issues

Laser Welding

- Welding length
 - Perimeter & around manifold holes
 - Portion of active area (to connect BPPs for electrical contact)

But total on-beam time still 0.2-5 min per BPP assembly

Engineering solutions can be developed

- Multiple plates per station
- Multiple stations
- Multiple lasers per station
- Multiple galvos per laser

Adhesives

5/9/2017

12

- Practiced by Toyota/Mirai
- Seals can fail (more frequently than welding)
- Can be done R2R before part singulation
- R2R can be very fast

Effective cycle time can be <2 seconds (at 20m/min.)

STRATEGIC ANALYSIS

Effective cycle time can be ~2 seconds per BPP assembly

Laser Welding Considerations

Low Volume Scenario

Stamped individual anode/cathode BPPs stacked in magazine

Pick-and-Place robot picks up and orientates anode and cathode BPPs into welding single fixture, then removes after welding. (20 seconds)

Manifold and perimeter welding time: ~30sec Active Area Flow field welding time: 35sec (for 5% of the flow field length)

2 stations each with 2 plates, 2 lasers, and 4 galvos/laser to progressively weld the plates

Effective welding time: 1.8sec/station + index time 2.5s/station => total 4.3s/ two plates =>2.2s/welded plate assembly

Ideal BPP Fabrication

(inspired by Nissan concept)

Option #1:

Key Points:

- 1) Delay singulation as long as possible.
- 2) Re-roll of formed plates would be an enabling technology.
- 3) Flow-field formation on the MEA would be an enabling technology.
- 4) R2R creation of a unitized cell (BPP plus MEA) would be an enabling technology.
- 5) Numerous configurations are possible.

Required Line Speed to Achieve 500k systems/yr

- Ideal line speed for BPP roll-to-roll processing and assembly
 - 380M parts/yr at 6,000 hrs/yr* and 10 lines =>0.57sec/part
 - Lines speed for single-wide BPP line =>26cm x 19cm (down length)
 - (0.19m/part) / (0.57s/part) = 0.33m/s or <u>~20m/min</u>
 - Line speed for double-wide BPP line => 52cm x 19cm (down length)
 - (0.19m/part) / (1.14s/2 parts) = 0.167m/s or <u>~10m/min</u>

For 10 lines: Required line speed is ~10-20 m/minute.For 1 line: Required line speed is ~100-200 m/minute.

* Assumes high utilization: 20 h/day, 300 days/year.

(Draft) Bipolar Plate Observations

(Consensus comments from interviewees)

Bipolar plates will likely be supplied as welded and coated assemblies

- Gaskets/seals were not included as a key component but were noted as a significant challenge and cost item during interviews
- Gaskets can be included on bipolar plate assembly or as a separate framed MEA with subgasket
- 3-5 suppliers worldwide are currently capable of producing bipolar plates with the quality and reliability required by OEMs at high volume
 - While stamping and welding technology is (in many ways) mature, achieving the required precision, quality control, and volume production dramatically limits the number of suppliers
 - New production houses can be developed but it will require years to establish themselves as viable automotive suppliers

• Factory likely to be sited near stack integrator/OEM at high volume

- At high volume, labor is not a cost driver
- However, shipping costs are very low
- Coating and forming/welding are different competencies, so these two operations may be separated

(Draft) Actions to Improve Competitiveness

High Priority Manufacturing Opportunities (generally applied research)

Opportunity #5: Development of (near-)continuous, high-speed process for BPP fabrication

- Sequential, roll-to-roll formation, coating, and joining of BPP assemblies
- Delay of part singulation so as to minimize part handling
- Develop processes capable of <1 sec per plate processing time (~3m²/min (based on total plate area))
- Opportunity #6: Program to characterize and assess the problem of thinning of metal in BPP
 - Investigate limitation of conventional sheet metal stamping due to metal elongation limits and thinning issues.

Opportunity #7: Development of alternate forming techniques that solve the metal thinning limitations of conventional stamping.

 Identify/Devise solutions to these limits so as to enable advanced BPP designs consistent with expected future stack performance (high power density, improved water management, low-pressure drop, low stoichiometric flow rates, etc.).

Manufacturing R&D/Demonstrations

Opportunity #8: Demonstration of high-speed, high accuracy, geometry-neutral fuel cell stacking system

- Equipment is needed by all vendors
- Provides quality control at high processing rates.

Opportunity #9: Demonstration of low-cost, high-speed, high-accuracy, geometry-neutral BPP welding systems

- Equipment is needed by multiple vendors.
- Current systems are costly due to low welding and indexing speeds.
- Desired system would leverage existing U.S. capabilities in welding and system automation to develop high-speed, high-accuracy automated systems that could be used by any fuel cell vendor.

Thank you.

Questions?