#### DOE Bioenergy Technologies Office (BETO) 2017 Project Peer Review

# Renewable Acid-hydrolysis Condensation Hydrotreating (REACH) Pilot Plant

This presentation does not contain any proprietary, confidential, or otherwise restricted information

March 6, 2017 Technology Area Review

> Karl Seck Mercurius Biofuels



# **Goal Statement**

- Design, build, and operate a pilot plant to scale-up the Mercurius REACH<sup>™</sup> process.
- REACH<sup>™</sup> a novel technology that efficiently converts cellulosic biomass into drop-in hydrocarbon jet fuel and diesel.
- Provides an economically viable technology to start building cellulosic biofuel capacity for RSF mandates.
- Competes with petroleum economics down to \$40/bbl.



# **Advanced Biofuels Categories**

**Biochemical Conversion:** 

- Fermentation to alcohols
- Very long residence time (days)
- Requires sugars as a feedstock

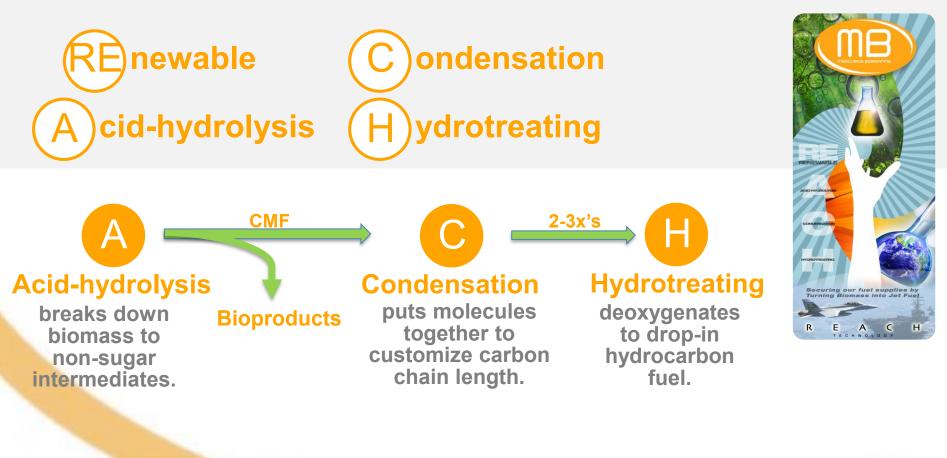
Thermochemical Conversion:

- Gasification and Pyrolysis
- Vapor phase process
- Large equipment to handle vapor volumes

Liquid Phase Catalytic (LPC) Conversion:

- Low volumes with liquid phase
- Fast reactions and low residence times (hours)
  Converts raw biomass
- Low temperature / pressure

Liquid phase = smaller equipment.


+

Catalytic = faster = smaller equipment.

#### Lower capital costs.



# **REACH Technology**





# **Quad Chart Overview**

### Timeline

- October 1, 2013
- December 2018 (estimate)
- Percent complete ~20%

### Budget

|                                      | Total<br>Costs FY<br>12 –FY<br>14 | FY 15<br>Costs | FY 16<br>Costs | Total Planned<br>Funding (FY<br>17-Project End<br>Date |
|--------------------------------------|-----------------------------------|----------------|----------------|--------------------------------------------------------|
| DOE<br>Funded                        | 576k                              | 275k           | 136k           | 3,600k                                                 |
| Project<br>Cost<br>Share<br>(Comp.)* | 576k                              | 275k           | 136k           | 3,600k                                                 |

### Barriers

- Barriers addressed:
  - Not mentioned in Multi-Year Program Plan
  - High Risk of Large Capital Investments
    - Liquid Phase Catalytic = low CapEx
    - Well known already scaled processes
  - Cost of Production
    - Feedstock flexible
    - No enzymes
    - Distributive model capable
    - < \$2/gal well below \$3 EERE goal.

### Partners

- Sub-recipients:
  - o Purdue University
  - o MSUBI
  - o University Of Maine
- CSIRO Melbourne



# **Executive Summary**

#### 1. Original FOA (DE-FOA-0000739, Mod. 000002):

Identify, evaluate, and select innovative pilot- or demonstration-scale integrated biorefineries that can produce hydrocarbon fuels that meet or are likely to meet military fuel specifications (JP-5, JP-8, F-76).

#### 2. High-level project description: Currently planning for BP2:

- Objective: Produce volume of fuel for military testing (at scale of 1 MT feedstock per day)
- *Feedstock*: Currently testing with corn stover. Future plans to test organic, non-recyclable portion of MSW and other non-food, waste cellulosic feedstock (e.g. yard waste)
- Testing Partners:
  - » Commonwealth Scientific and industrial Research Organisation (CSIRO): R&D for acidhydrolysis and condensation reactions
  - » Purdue University: condensation reactions, feedstock supply study, acid-hydrolysis reactions
  - » University of Maine: condensation and hydrotreating reactions
  - » Michigan State University Bioeconomy Institute (*hereafter referred to as "MSUBI"*): acidhydrolysis scale-up, condensation products analyses



# **Executive Summary**

- **3.** Provide a high-level review of the Project Team's accomplishments since the last CPR review (or since project start for new projects):
  - *Bench scale preparatory research at CSIRO:* Acid hydrolysis with multiple feedstocks, pretreatment investigations, feed prep reactions, condensation reactions.
  - *1 Liter scale-up at Purdue:* Acid hydrolysis with multiple feedstocks, pretreatment investigations, feed prep reactions, condensation reactions at 1L scale.
  - 400 Liter scale-up at MSUBI: Acid hydrolysis with corn stover at 400L scale.
  - *Continuous Reaction Optimization at UMaine*: Condensation reactions and hydrotreating with flow reactors.
  - Preliminary fuel testing at Purdue and UMaine
  - Very high chance of success with optimized steps of the process.
- 4. Provide a high-level review of the future plans for the project:
  - 1-10 DTPD pilot operation at MSUBI: Use existing equipment and infrastructure to operate pilot plant for the production of condensation feedstocks. Feedstock to be supplied by Purdue.
  - Small scale condensation and hydrotreating: Use existing equipment and infrastructure for condensation reactions and hydrotreating at UMaine (~1 L/day).
  - *Fuel testing*: Military jet fuel and diesel testing at existing facilities at Purdue.
  - *Optional larger scale fuel production*: Produce 10's L/day at existing pilot scale hydrotreating facilities. *TEA/LCA Update:* Mercurius and Purdue.
  - Current cost structure below \$2/gge fuel: Low cost producer well below future BETO target of \$3/gge.

# **Project Schedule Updates**

- 1. Variance from original schedule to final schedule.
  - Preparatory work was expanded due to technology provider dropping out of the project.
  - Total schedule slip approximately 2.5 years.
- 2. Identify and discuss major factors for schedule delays.
  - Longer preparatory period. ~6 months.
  - Funding delays. ~12 months.
  - Administrative delays. ~12 months



# **Budget Overview**

- Present total project cost (TPC) and total budget information
  - The proposed BP-2 budget reduced due to the use of existing equipment.
  - BP-1A (preparatory): \$1.4mil vs. \$0.52mil original.
  - BP-1B (FEL): \$0.6mil vs. \$0.86mil original.
- Original TPC = \$9.4mil



# **1 - Project Overview**

- Design, build, and operate a pilot plant to scale-up the Mercurius REACH<sup>™</sup> process and provide fuel for certification testing.
- Started award negotiations, April 2013, DOE kick-off June 2013, contract in place Oct 2013.
- Completed BP-1A for research optimization June 2014:
  - CSIRO small bench scale investigation of multiple steps of technology
  - Purdue scales-up acid hydrolysis to 1 L size
  - Multiple 400 L runs at MSUBI
  - Favorable IE report
  - DOE provided technical GO decision
- BP-1B nearly complete:
  - FEL engineering for Pilot Plant
    - March 31, 2017 *No more time extensions!!!!!!*



# 2 – Approach (Management)

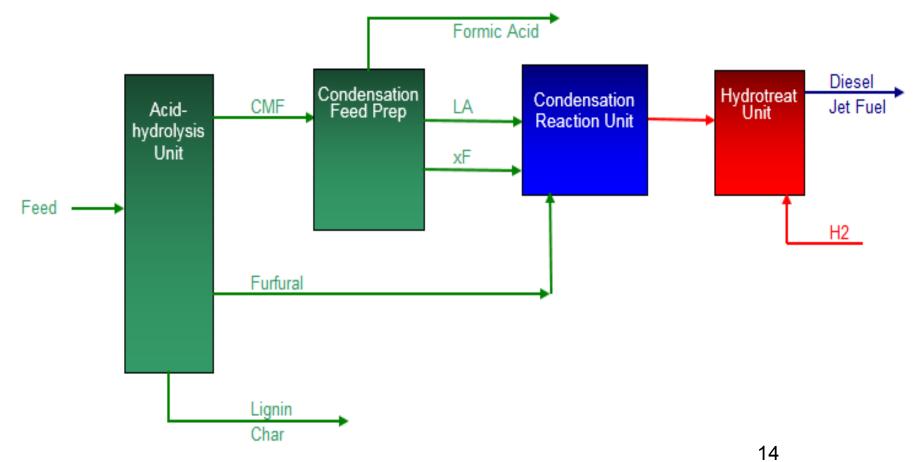
• Use accepted Front End Loading (FEL) project management procedures to manage project.

- Focus on safety especially during BP-2 activities.
- *Reduce CapEx by re-using existing equipment and facilities.*
- *Reduce OpEx by sharing or contracting with existing/trained labor.*
- Maximize in-kind cost share through out project.
- Use project successes in pitch to potential investors.
- Barriers DOE 25% contingency fund requirement.

# 2 – Approach (Technical)

- REACH technology is <u>Renewable Acid-hydrolysis</u> <u>Condensation</u> <u>Hydrotreating</u>
  - Acid hydrolysis to non-sugar intermediates CMF(converted to other compounds) and furfural.
  - Condensation reactions to combine intermediates for carbon chain length.
  - Hydrotreat to drop-in hydrocarbon jet fuel and diesel.
- Critical success factors:
  - Confirm reaction parameters, residence times, and product yields.
  - Confirm relative insensitivity to feedstocks.
  - Bench scale-up to inform pilot plant design.
  - Pilot runs to provide data including: catalyst life and recovery, solvent recycle, product quality; for commercial plant design.
  - Successful product testing for certification.
- Potential challenges: (technical and non-technical) to be overcome for achieving successful project results
  - Technical Acid recovery/recycle, product quality, TEA validation.
  - Non-technical fund raising and DOE interface issues.




# 3 – Technical Accomplishments/ Progress/Results

- Acid-hydrolysis
  - Verified CMF yields with multiple feed stocks at bench scale.
  - Developed pretreatment to maximize furfural yields.
  - CSIRO data for: corn stover, hard wood, and sugar cane bagasse.
  - Purdue assembled and operated 1 L pressure reactor using corn stover.
  - MSUBI scaled up to 400 L with existing equipment.
- Condensation
  - CSIRO investigated CMF conversion to levulinic compounds and identified the best path forward for pilot plant investigation.
  - CSIRO investigate multiple condensation pathways
  - Purdue investigated promising solid catalyst condensation pathway.
  - Purdue/UMaine scaled up both condensation feed generation and condensation reactions.
- Hydrotreating -
  - UMaine hydrotreated condensation products to hydrocarbons.
  - Confirmed complete deoxygenation to jet fuel and diesel range hydrocarbons.



# 3 – Technical Accomplishments/ Progress/Results (cont'd)

- Milestones Go decision on proceeding to next budget period, BP-1B, front end engineering for pilot plant.
- Current optimized block flow:



## 4 – Relevance

- Lowers Capex for cellulosic biofuels
  - Liquid phase catalytic process inherently more capital efficient
  - 3-5 \$ per annual gallon of capacity
  - Pilot project will firm up Capex estimates
- Lowers Opex for cellulosic biofuels
  - Does not require enzymes for hydrolysis
  - Robust acid hydrolysis is feedstock flexible
  - Lower cost harvest and feedstock storage techniques in development
  - No genetically modified organisms or feedstocks required
  - Distributive model would lower costs further

#### **Cost Structure (Corn Stover)**

### CapEx:



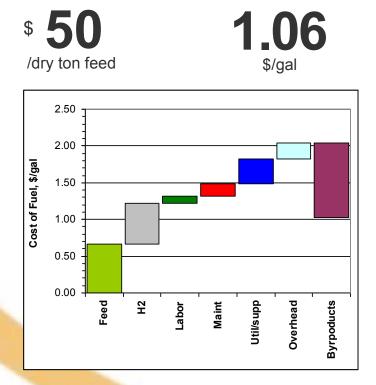
capacity

For example, a 15 mil gal plant at \$4/annual gal capacity would cost \$60 million

# **OpEx:**

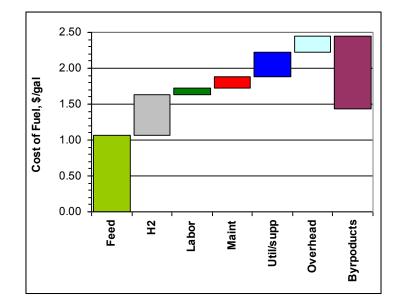
\$**1.06** 

/gal **excluding** capital charges


\$**1.62** 

/gal **including** capital charges




### **Cost Breakdown**

#### **Base Case**



# **Sensitivity**

\$ 80 /dry ton feed 1.46 \$/gal



MB

# 5 – Future Work

- BP-2 will start in April 2017, operate pilot plant at MSUBI
- After a GO decision at the end of BP-1B move into BP-2.
- BP-2:
  - Startup and operation
  - Investigation of multiple feedstocks, recycles, recoveries, etc.
  - BP-3: Demo Plant



# Summary

- Early stage project that is on track to meet project deliverables and milestones.
- Successfully completed BP-1A/1B.
- Project has been very efficient and will continue to look for existing facilities and opportunities to reduce costs.
- Primary barrier to date has been fund raising.
- Potentially game-changing technology.

# **Thank You!**

#### Renewable Acid-hydrolysis Condensation Hydrotreating (REACH) Pilot Plant

March 6, 2017 DOE Peer Review

Karl Seck Mercurius Biofuels

