

Atmospheric CO₂ Capture and Membrane Delivery

Principal Investigator

DOE Peer Review 2017

Goal Statement

- Goal: Design, build, and demonstrate outdoors a system for capturing and concentrating CO₂ from ambient air and delivering the CO₂ to microalgae.
- Outcomes:
 - Capture and concentrate CO₂ from ambient air
 - Store CO₂ in a carbonate brine
 - Extract, concentrate, and pressurize CO₂
 - Efficiently deliver CO₂ to grow microalgae
 - $\circ\,$ Outdoor algal cultivation for 1 month in 75L PBR and 1500L pond with CO_2 captured from ambient air.
- Relevance: Provide a renewable, clean, and concentrated CO₂ stream to microalgae grown far from concentrated CO₂ sources.

Quad Chart Overview

Timeline

- Start: 10/1/15 (Validation), 3/1/16 (Research)
- End: 2/28/18
- Status: ~50% complete

Budget

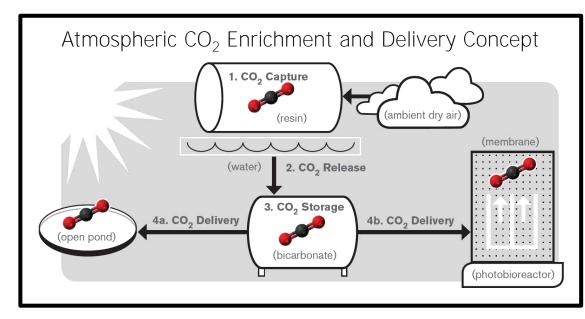
	FY 15 Costs	FY 16 Costs	Total Planned Funding (FY 17-Project End Date)
DOE Funded	0	\$224,782	\$775,218
Project Cost Share (Comp.)*	0	\$89,279	\$162,715

Barriers

- Technical Barriers
 - Atmospheric CO₂ Capture and Concentration
 - CO₂ Storage and Extraction
 - Efficient CO₂ delivery and utilization

• MYPP Technical Targets

- Productivity: 25 g/m²-d (2022)
- CO₂ Utilization: 90%
- CO₂ + Nutrient Cost: \$120 / ton
 AFDW (2022)


Partners

• None, ASU Only

1 – Project Overview

• History

- Bruce Rittmann patented technology using membranes to deliver H₂ to treat wastewater and adapted it for PBR carbonation in 2011
- Klaus Lackner joined ASU in Fall 2014, bringing technology to capture and concentrate CO₂ from ambient air
- Objectives
 Build a system that:
 - Captures and concentrate atmospheric CO₂
 - 2. Stores CO₂ in a buffer to ensure adequate supply at any time and further concentrate CO₂ for delivery

3. Uses bubble-less CO_2 delivery: >90% into media, >70% into biomass

2 – Approach (Management)

Membrane Carbonation (MC)

Bruce Rittmann Principal Investigator

Everett Eustance Postdoc

Key Personnel

Justin Flory Technical Project Manager

Robert Stirling

Techno-Economic Analyst

Moisture Swing Sorption (MSS)

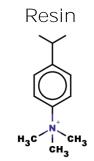
Klaus Lackner

Allen Wright

Lead Engineer

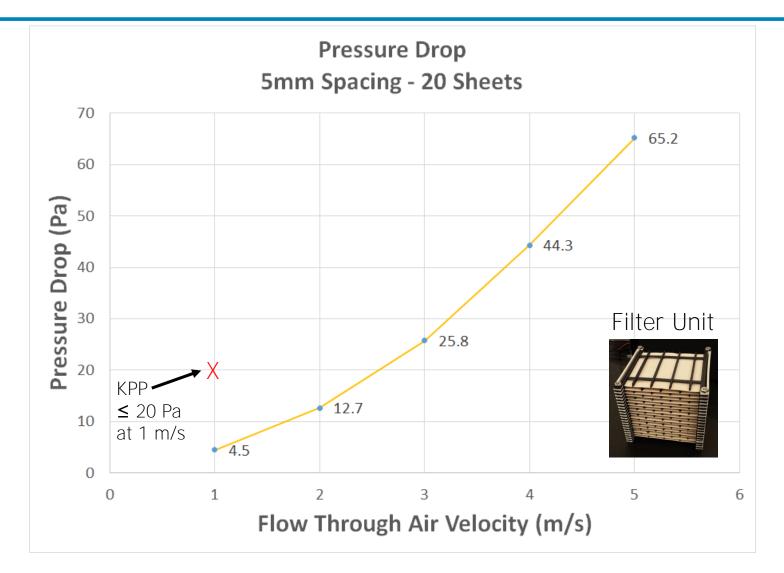
Senior Engineer

Jason Kmon Engineer

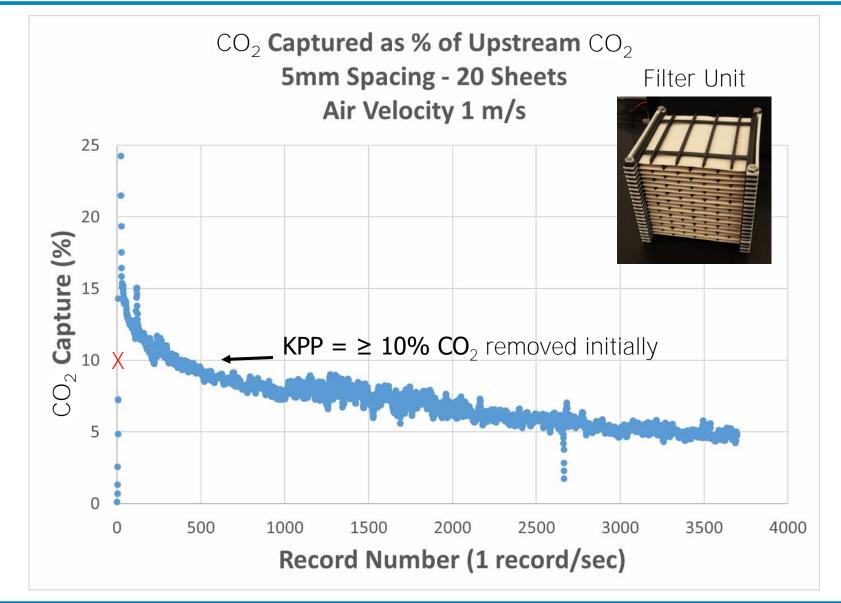

Yun Ge

Postdoc

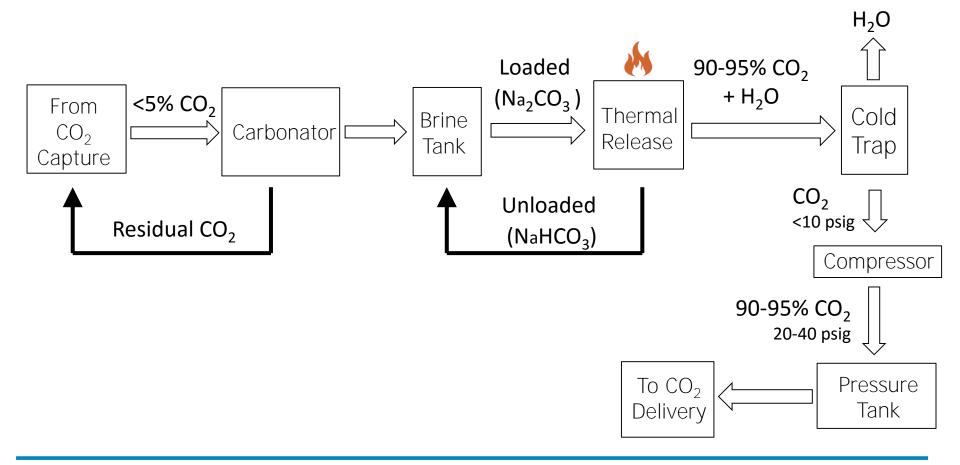
2 – Approach (Technical)


- Technical Approach
 - $\circ~$ Anionic resin sheets capture CO_2 when dry and release when wet
 - CO₂ is transferred to sodium carbonate/bicarbonate brines to buffer capture and demand rates; thermally extracted and pressurized
 - $\circ~~\sim 100\%~CO_2$ is delivered on demand into PBR using membrane fibers
 - Integrated system is tested ≥1 mo outdoors in a 75L PBR and 1500L pond
- Go / No Go [Mar 2017]:
 - Capture/storage system delivers CO₂ partial pressure that meets or exceeds the demand of membrane carbonation / microalgae system
- Challenges
 - Capture: Support structure cost, resin density, and dead space
 - Storage: CO₂ transfer rate and efficiency into and out of brine
 - Delivery: Accumulation of non-CO₂ gases in fibers
- Success Factors
 - \circ Capture: kg CO_2 / kg resin; kg structure / kg resin
 - Storage: transfer rates; heat recovery; storage cost / kg CO₂
 - Delivery: CO₂ transfer efficiency and flux stability over time

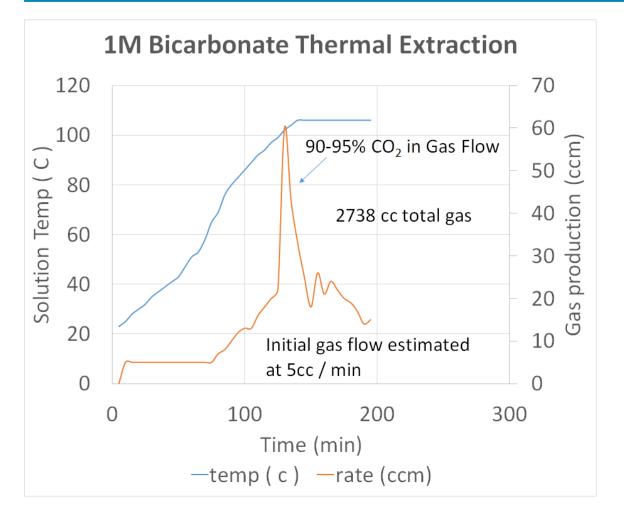
Hollow Fiber Membranes



Filter Unit Built & Tested: Pressure Drop

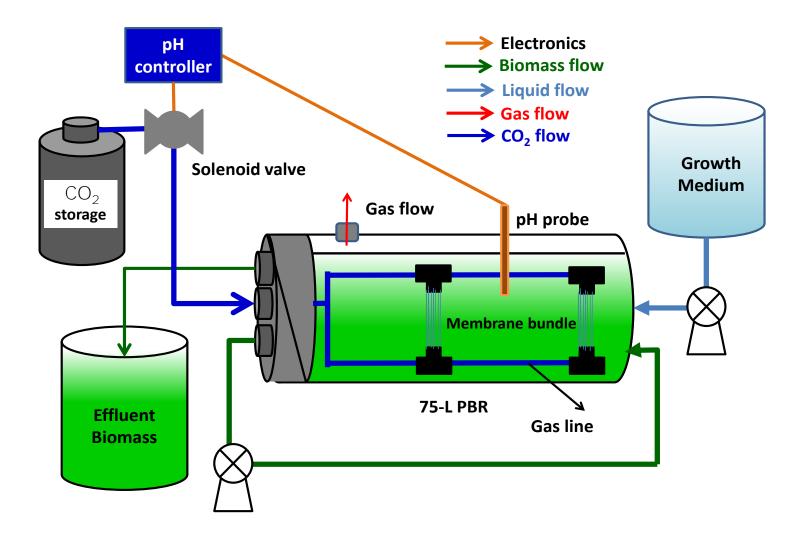

• Low pressure drop ensures sufficient air flow at low wind speed

Filter Unit: Atmospheric CO₂ Captured

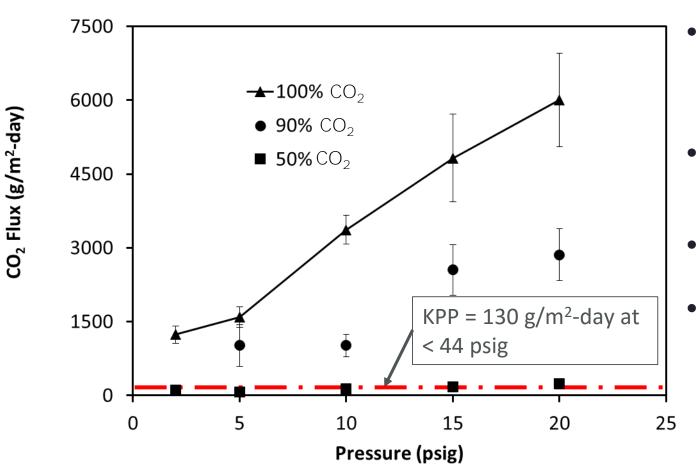


Design: CO₂ Storage Brine

• Captured CO₂ stored in sodium a (bi)carbonate brine $Na_2CO_3 + CO_2 + H_2O \iff 2 NaHCO_3$

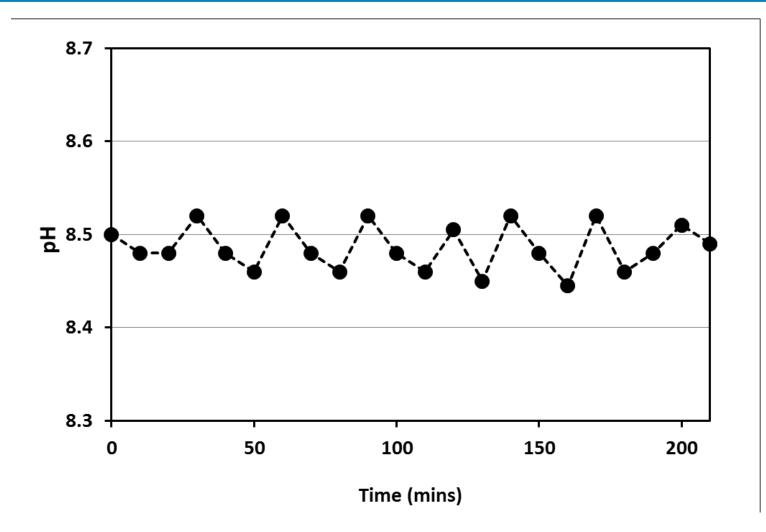


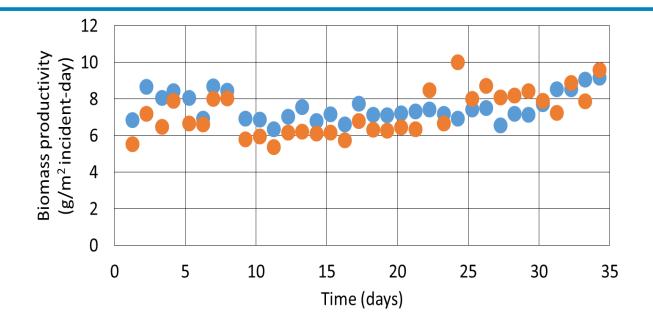
Design Validated: Thermal CO₂ Extraction



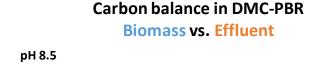
- Most CO₂ released near 100 °C
- Multi-tray design underway to recycle heat

Design: CO₂ Delivery

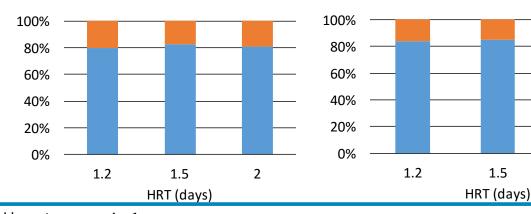

Lab Scale: CO₂ Flux Evaluated


- Substantially exceed KPP criterion for >50% CO₂.
- Suspect non-CO₂ gas accumulating in the fiber.
- Investigating a bleed valve
- No significant change in flux vs pH (**6.5–10.5**) or **alkalinity (5–20** mg/L)

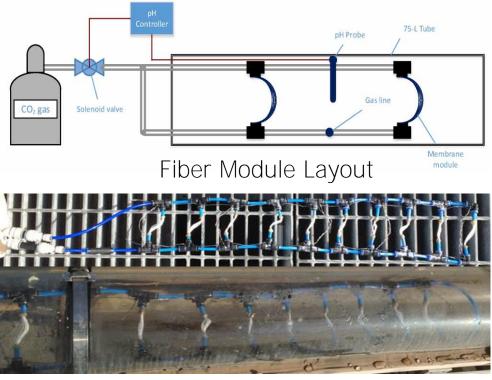
Flux units are m² of fiber surface area


Lab Scale: pH Controlled by Membrane Carbonation

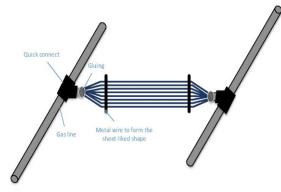
Lab Scale: Cultivation & Carbon Balance



Expected productivity for Scenedesmus is 5-10 g/m²-day


2

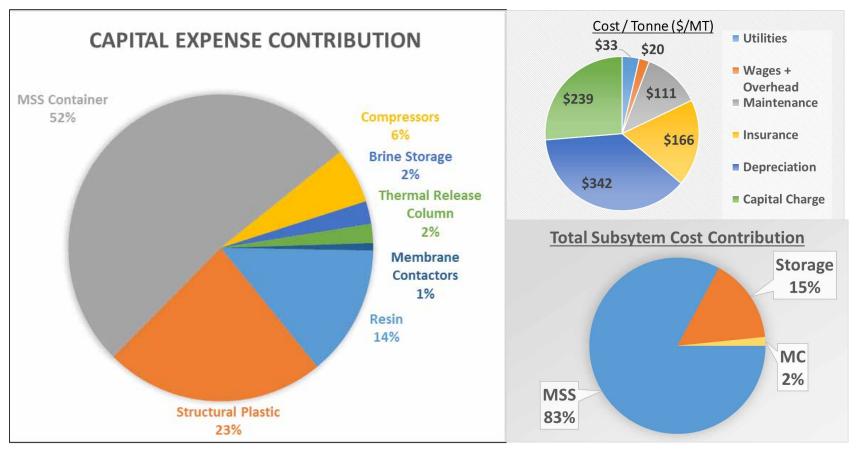
 On target to exceed 90%
 CO₂ utilization
 MYPP target


Milestone 4.1

Design: Scaling up Fibers to 75L

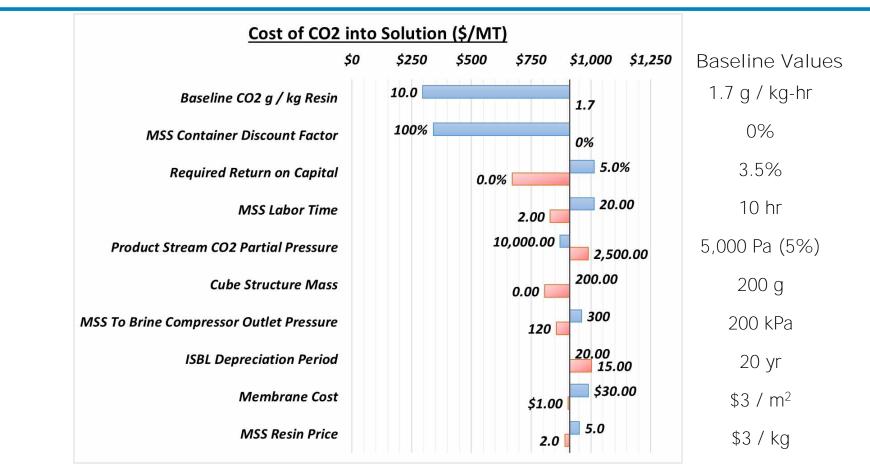
Assembled Fiber Modules

- Go / No Go
 - Integration requirements met
 - Expected CO₂ composition from storage delivered at required rate


Fiber Module

75-L PBR (x4)

Milestone 5.1


Techno-Economic Analysis of Prototype

- Extrapolating the Prototype housing design to large scale leads to an estimated cost of dissolved, bioavailable CO₂ of ~\$900 per metric ton.
- The majority of the cost comes from the CapEx required to enclosed, wet, and dry the functional resin.

Milestone 6.1

TEA: Tornado Chart

Observations & Recommendations:

- 1. Maximize resin productivity
- 2. Minimize MSS container cost
- 3. Sparging captured CO₂ into storage brine is costly (P_{CO2}; compressor)

Milestone 6.1

Blue = Assumption Increases Red = Assumption Decreases

Relevance

- Goal: Design, build, and demonstrate outdoors a system for capturing and concentrating CO₂ from ambient air and delivering the CO₂ to microalgae.
- Demonstrated ~100% CO₂ delivery into PBR
- Industry Relevance
 - Provide clean, sustainable, concentrated CO₂ in sunny locales far from concentrated sources
 - Deliver valuable CO_2 into PBR with ~100% efficiency
- Project Impact
 - Enable high productivities of microalgae from sustainable CO₂ sources
- Marketability
 - CO₂ Capture & Storage: algae, greenhouses, solar fuels, sequestration
 - Membrane Carbonation: air capture, bottled CO₂, flue gas

Future Work

- Integrate Systems
 - Build, integrate and test system for 75L PBR and 1500L pond
 - Operate ACED system for 1 month in 75L PBR and 1500L pond
 - Milestones 9.1 (75L), 10.1 and 10.2 (1500L)
- Techno-economic Model and Validation
 Milestone 11.1
- Improve Performance and Reduce Cost
 - CO₂ Capture and Storage
 - Carbonator: Replace sparging with low pressure contactor
 - Engineer lower costs scaffolding materials (acrylic, fiberglass)
 - Investigate faster sorbent materials
 - CO₂ Delivery
 - Assess impact of humidity on CO₂ flux through membrane
 - Optimize flow of CO₂ into PBR while venting other accumulating gases
 - Optimize placement of fiber module and density of fibers for efficient CO₂ transfer

Raceway Pond at ASU

Summary

- Overview
 - Outdoor demonstration of the ACED system for delivering concentrated CO₂ to microalgae captured directly from ambient air.

• Approach

- Moisture swing sorption CO₂ capture, carbonate brine storage, and membrane carbonation CO₂ delivery.
- Technical Accomplishments / Progress / Results
 - Subsystem designs validated: CO₂ captured, delivered into brine, extracted from brine, delivered into PBR.

• Relevance

 Provide clean, sustainable, concentrated CO₂ in sunny locales far from concentrated sources and delivered into PBRs with ~100% efficiency.

• Future Work

• Integration, 1 mo. outdoor operation (75L & 1500L), TEA, optimization

ARIZONA STATE UNIVERSITY

Questions?

Bruce Rittmann, Ph.D.

ACED Principal Investigator

Director, Swette Center for Environmental Biotechnology Regents' Professor of Environmental Engineering The Biodesign Institute Arizona State University

Arizona State University

Biodesign Institute

ISTB-4

Arizona Center for Algae Technology and Innovation (AzCATI)

ARIZONA STATE UNIVERSITY

Supporting Slides

Responses to Previous Reviewers' Comments

- First review, no prior comments
- Go / No Go review will occur after this presentation

Publications, Patents, Presentations, Awards, and Commercialization

Publications

- Kim, H.-W., J. Cheng, and B. E. Rittmann (2016). Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal. Bioresource Technology 204: 32 37
- Wang, T., Liu, J., Lackner, K. S., Shi, X., Fang, M. and Luo, Z. (2016), Characterization of kinetic limitations to atmospheric CO₂ capture by solid sorbent. Greenhouse Gas Sci Technol, 6: 138–149.
- Shi, Xiaoyang, et al. "Capture CO2 from Ambient Air Using Nanoconfined Ion Hydration." *Angewandte Chemie* (2016).
- Shi, Xiaoyang, et al. "The Effect of Moisture on the Hydrolysis of Basic Salts." *Chemistry- A European Journal* 22.51 (2016): 18326-18330
- Lackner, Klaus S. "The promise of negative emissions." *Science* 354.6313 (2016): 714

• Awards

- Bruce Rittmann, Gordon Maskew Fair Award, American Academy of Environmental Engineers and Scientists, April 14, 2016, Washington, DC
- Bruce Rittmann, Perry L. McCarty/AEESP Founders' Award, August 2016
- Patents: Nothing to report
- Commercialization: Nothing to report

Publications, Patents, Presentations, Awards, and Commercialization

• Presentations

- Klaus Lackner, "Air Capture Technology" Oxford Greenhouse Gas Removal Conference, Oxford, England. October 5, 2015
- Klaus Lackner, "Progress in Direct Air Capture" Gary C. Comer Climate Change Conference, Soldier Grove, WI. November 18, 2015
- Klaus Lackner, "The State of Direct Air Capture" Carbon Management Technology Conference, Sugarland, TX. November 18, 2015
- Klaus Lackner, "Climate 3.0 Engineering" ASU Climate 3.0 Conference, Tempe, AZ. January 12, 2016
- Klaus Lackner, "Negative Carbon Emissions" *The Ohio State University, Department of Chemical and Biomolecular Engineering*, Columbus, OH. February 18, 2016
- Klaus Lackner, "The Needs and Opportunities for Capturing Carbon Dioxide from the Atmosphere" ARPA-E Energy Innovation Summit, Washington DC. February 29, 2016
- Klaus Lackner, "Air Capture of CO2 as a Core Technology for Sustainable Development" Google X Talk/Visit, Mountain View, CA. April 25, 2016
- Klaus Lackner, "Air Capture Carbon Negative: A Technology For The Future" AREDay, Aspen, CO. June 21, 2016
- Klaus Lackner, "Balancing the World's Carbon Budget with Direct Air Capture" ASME Power and Energy Conference, Charlotte, NC. June 29, 2016
- Klaus Lackner, "Direct Air Capture" Aspen Global Change Institute Workshop, Aspen, CO. August 4, 2016
- Klaus Lackner, "Balancing Carbon Budgets with Direct Air Capture" Wyoming Global Technology Summit, Jackson Hole, WY. September 9, 2016

Publications, Patents, Presentations, Awards, and Commercialization

• Presentations (cont)

- Klaus Lackner, "Balancing Carbon Budgets with Direct Air Capture" Meeting with BASF, Ludwigshafen, Germany. September 9, 2016
- Klaus Lackner, "Carbon Management: Moving to a Waste Paradigm" *Meeting with Siemans, Munich, Germany.* September 9, 2016
- Klaus Lackner, "Direct Air Capture, Advances and Context" Closing the Carbon Cycle: Fuels from Air, Tempe, AZ. September 28, 2016
- Klaus Lackner, "Direct Air Capture Managing CO2 as a Waste" Comer Climate Conference, Soldier Grove, WI. October 3, 2016
- Klaus Lackner, "Direct Air Capture as a Tool for Carbon Management" Beyond Carbon Neutral Seminar Series University of Michigan, Ann Arbor, MI. October 7, 2016
- Klaus Lackner, "Direct Air Capture as a Tool for Carbon Management" ARPA-E Talk/Visit, Washington DC. December 7, 2016
- Klaus Lackner, "Industrial and Carbon Capture Storage" Deep Carbonization Initiative Workshop, National Renewable Energy Laboratory (NREL), Golden, CO. December 8, 2016
- Klaus Lackner, "Mineral Carbonation Retrospective: Non-Starter, or Technology Whose Time Has Come?" Workshop on Mineral Carbonation for Carbon Capture & Storage, San Francisco, CA. December 16, 2016
- Klaus Lackner, "Massively Parallel Infrastructures" Small Scale and Modular Carbon Capture Workshop, Lawrence Livermore National Laboratory, Livermore, CA. January 18, 2017