

U.S. Department of Energy (DOE) Bioenergy Technologies Office (BETO) 2017 Project Peer Review

Production of Biocrude in an Advanced Photobioreactor-Based Biorefinery

March 9, 2017 Algae Session

Co-PIs: Drs. Ron Chance and Paul Roessler Business Contact: Ed Legere, CEO Algenol Biotech

This presentation does not contain any proprietary, confidential, or otherwise restricted information

ALGEND Goal Statement: Production of Biocrude in an Advanced Photobioreactor-Based Biorefinery

This project will demonstrate the following technology advancements:

- Biofuel Intermediate (BFI, Biocrude) productivity of >4,000 gal-BFI/acre-yr in a PBR-based production system
- Biomass harvesting, dewatering, and HTL integration that has an energy expenditure <10% of the energy content in BFI and an overall >60% carbon footprint reduction
- Comprehensive economic analysis that includes comparison of PBR to open pond systems and considers co-product generation as an enabling approach to market entry

Closely aligned with three ABY2 Priority Areas:

- 1. Strain/productivity improvement
- 2. Improvements in pre-processing technologies (harvesting, dewatering, and extraction and/or equivalent processes)

2

3. Integration of cultivation with pre-processing technologies

Quad Chart Overview

ALGENOL

Timeline

- Project Start: 4Q/2016
- Project Completion: 1Q/2020
- Percent Complete: 5%

Barriers

- BFI Productivity and Quality
- Overall economics, including co-product scenario
- Overall energy efficiency of bio-refinery

Budget

	Total Costs FY 16–FY 20	FY 16 Costs	FY 17 Costs	Total Planned Funding (FY 16- Project End Date)
DOE Funded	\$5.0M	\$0.243M	\$1.626M	\$3.131M
Project Cost Share (Comp.)*	\$1.25M	\$0.058M	\$0.411M	\$0.781M

Partners

- DOE funded:
- Algenol 71%
- NREL 15% (P. Pienkos, J. Yu)
- GaTech 10% (M. Realff, V. Thomas)
- ASU 4% (J. McGowen)
- Cost share:
- Algenol 50%

3

• RIL 50% (M. Phadke, R. Bhujade)

ALGENOL 1 – Project Overview: Headquarters and Commercial Development Campus, Fort Myers, FL

Additional Facilities

- Biological Research Berlin, Germany
- Photobioreactor Manufacturing Lehigh Acres, Florida

1 – Project Overview: Background

- Algenol has built and operated a 2 acre biorefinery for production of ethanol from cyanobacteria cultured in proprietary photobioreactors designed and manufactured by Algenol. (2011-2016, DOE-funded IBR)
- Background Technology relevant to current project
 - Large, diverse, proprietary strain collection (Algenol)
 - Expertise in the genetic modification of cyanobacteria for biomass production and coproduct production (Algenol and NREL)

ALGENO

- Extensive experience with outdoor cyanobacteria cultivation and translating laboratory results to outdoor environment (Algenol and RIL)
- Validated, multi-variable productivity models for PBR arrays or ponds at any location where light and temperature data are available (Algenol)
- Advanced, diverse separation technologies (Algenol, RIL, GaTech)
- CO₂ Management and IBR integration systems (Algenol/Gatech)
- Biomass conversion via HTL (RIL, NREL, PNNL, Algenol)
- Scale-up experience to reduce uncertainty in both larger scale performance expectations and cost projections for techno-economic analysis (TEA) and life cycle analysis (LCA), including peer reviewed publications (Algenol, RIL, GaTech)
- PBR manufacturing facility and design expertise for PBR optimization for biomass production (Algenol)

1 – Project Overview: Flow Diagram for BFI ALGENOL Production with Co-product Option

2 – Approach (Management)

ALGENOL

- The Project Management Plan (PMP) will be modeled after the PMP successfully used to build and operate the Integrated Bio-Refinery
- The Project Management Team
 - Led by co-PIs (Drs. Chance and Roessler)
 - One senior member from each organization (Algenol, RIL, NREL, GaTech)
 - Monthly teleconferences and semi-annual face-to-face meetings to review
 progress
- Management process
 - Project teams built around all major tasks as listed in Technical Volume
 - Stage gate process for go/no-go decisions for each budget period
 - Gatekeepers will be senior representatives from each organization (led by Ed Legere, CEO of Algenol and business contact for this project)
 - Proactive risk management is a key part of the PMP with a risk management plan (RMP) developed for all major deliverables and following the guidance provided in DOE Order 413.3.

ALGENOL

2 – Approach (Technical)

Task	Expected Outcomes	Responsible Parties				
1.0 – DOE Project validation	A go/no go decision for Project commencement	DOE/All Team Members				
Objective 1 – Improve biofuel i						
2.0 – Strain development to improve productivity and processing	Strains improved for productivity, downstream processing and higher HTL-based BFI yield and quality	Algenol/NREL				
3.0 – Improved productivity through operational and engineering approaches	Stable outdoor operation with improved yield and product quality and without major system upsets	Algenol				
4.0 – Intermediate scale process validation	30% greater biomass yield compared to base strain and current PBR system	Algenol/GaTech/ASU				
Objective 2 – Pilot and improve						
5.0 – Iterative strain and process optimization	Advance strains based on field trial feedback, combine best traits into high performance strain	Algenol/NREL				
6.0 – Operation and biomass harvest at scale	Production yield potential in PBR systems and open ponds; harvest biomass for downstream processing studies	Algenol/GaTech/RIL				
7.0 – Downstream processing optimization	Unit operation specifications, unit heat and material balances, and BFI quantity and quality	Algenol/RIL/GaTech				
Objective 3 – Integrated algal b						
8.0 – Integrated operation and commercial assessment	Integrated system demonstrated at scale. Targeted values attained for TEA and LCA for algal BFI and co-products.	All Team Members				

ALGENOL

2 – Approach (Technical – Productivity) Improved BFI productivity

- Improved biomass productivity
 - Strain development *via* targeted and non-targeted approaches to improve photosynthetic efficiency (Algenol)
 - PBR optimization to enhance mixing and light utilization (Algenol)
 - Engineering systems semi-continuous operation (Algenol)
 - Cultivation optimization (Algenol)
- Improved HTL yield and quality
 - Strain development to optimize biochemical composition (Algenol, NREL)
 - Engineering systems (RIL, NREL, Algenol)

Co-Product

- Productivity and content important
- Efficiency of extraction process
- Disposition of residue

2-LvPBR Indoor Turbidostat AB1 Cultivation

- sOD = 2, growth rate 1 sOD per day (@ $230\mu E/m^2-s$)
- sOD = 3, growth rate 1.15 sOD per day (@ $230\mu E/m^2-s$)
- sOD = 4, growth rate 1 sOD per day (@ $230\mu E/m^2-s$)
- sOD =5.5, growth rate 0.7 sOD per day (@230 μE/m²-s)

10

ALGENOL

Annualized Productivities Derived from Laboratory Turbidostat Experiments on AB1

Indoor Experiment sOD@indoor_light ¹	Average Indoor Dilution rate (12- hr average)	Indoor growth rate ²	Predicted Outdoor HS=4:1 (95 L/m ²) ³	Predicted Outdoor HS =2.4:1 (0.85% of HS=4 productivity)			
μE/m²-s	%/hr	gAFDW/L-d	gAFDW/L-d	gAFDW/L-d			
2.0 @ 230 µE/m²-s	0.040 (70 days)	0.24	22.8	19.4			
3.0 @ 230 µE/m ² -s	0.032 (55 days)	0.29	27.4	23.3			
4.0 @ 230 µE/m ² -s	0.020 (75 days)	0.24	22.8	19.4			
5.5 @ 230 µE/m ² -s	0.011 (30 days)	0.18	17.1	14.5			

ALGENO

¹230 μ E/m²-s is the average annual irradiance over the PBR surface for a height to spacing ratio (HS) of 4.0 for Florida climate conditions (NASA data base); for HS = 2.4 the average irradiance is 350 μ E/m²-s. Stated reduction for HS=2.4:1 is an estimate for biomass production.

² Growth rate (gAFDW/L-d) = 12 hr × Dilution rate × sOD@Turbidostat × 0.25 gAFDW/L; (Algenol History WT AB1 dataset, 1 sOD = 0.25 g AFDW/L, 0.26 gDW/L per sOD, ~ 5% ash content).

³ Outdoor Areal Productivity (gAFDW/m²-d) = Growth rate (gAFDW/L-d) × PBR volume (L/m²); about 15% uncertainty in outdoor productivity projection from indoor experiment, because of light acclimation time scale, DOC release, etc.

2 – Approach Technical: Semi-Continuous Operation

AB1 outdoor experiment at 15 L scale in May 2013, Fort Myers, Florida:

a Cumulative ash-free biomass (average of two 15 L PBRs) with model fit using Algenol Productivity Model

b Predicted productivity (observed and annualized results) for operation in turbidostat mode with turbidostat setting chosen for indicated culture day

c Average daily irradiance for the experiment

Note: Peak annualized productivity in middle panel would correspond to 3000 gal-BFI/acre-yr assuming 35% HTL yield and 90% up-time for the biorefinery.

2 – Approach (Technical – Energy Efficiency)

Energy efficient operations and carbon footprint reduction

ALGENO

- Improved biomass harvesting
 - Identification or development of low viscosity strains (Algenol)
 - Process optimization (Algenol, GaTech)
- Improved dewatering technology
 - Identification or development of low viscosity strains (Algenol)
 - Membrane systems and combinations with centrifuge (Algenol)
- Reduced energy consumption in plant operations
 - Piping network optimization for gas and liquid transport (Algenol, RIL)
 - HTL optimization (RIL, Algenol)
- CO₂ utilization
 - Optimize sourcing and energy generation systems (Algenol, RIL, GaTech)
 - Optimize utilization efficiency (Algenol)

2 – Approach (Technical – Economics)

Limitations and opportunities for economic development

- Develop TEA model
 - Modify existing TEA model for ethanol production to biocrude production (Algenol, RIL, GaTech)

ALGEN

- Extend model to include co-product scenario (Algenol, GaTech)
- Examine and incorporate carbon footprint reduction incentives (Algenol)
- Compare economics for PBR-based system with open-pond system
 - Conduct open-pond experiments with Algenol strains at ATP³ test bed at ASU and potentially at RIL facilities in India (Algenol, ASU, RIL)
 - Continue working with DOE to establish cost comparisons for PBR vs open pond systems (Algenol)
- Develop economic model for co-product strategy
 - Develop production system for co-product production combined with conversion of residual biomass to biocrude (Algenol, RIL)
 - Adapt TEA and LCA models to assess co-product system and scaling limitations (Algenol, GaTech)

ALGENOL

3 – Technical Accomplishments/Progress/Results

• This is a new project (started in 4Q2016) and does not have technical accomplishments/progress/results update criteria.

ALGENOL

4 – Relevance

Project Goals

- Biofuel Intermediate (BFI, Biocrude) productivity of >4,000 gal-BFI/acre-yr in a PBR-based process
- Biomass harvesting, dewatering, and HTL integration that has an energy expenditure <10% of the energy content in BFI and an overall >60% carbon footprint reduction
- Comprehensive economic analysis that includes comparison of PBR to open pond systems and considers co-product generation as market entry strategy

Importance to bioenergy industry

- Establishment of biocrude production potential in PBR based biorefinery with all aspects of the value proposition: production levels, economics, carbon footprint, and application scope
- Provide a market entry strategy based on a high-value co-product, that can yield short term profits while demonstrating long term operability at reasonable scale, thus reducing the investment risk/economic uncertainty for biofuel facilities
- Provide a detailed, experimentally-based comparison of PBR and open-pond systems for biocrude production

4 – Relevance

ALGENO

Relevance to BETO goals

- Provides a comprehensive assessment of a pathway to a product that is a drop-in to existing refinery infrastructure
- Provides a fossil fuel replacement with greatly reduced carbon footprint
- Provides a market entry strategy that can reduce the risk and uncertainty associated with biofuel development
- Provides a promising opportunity for a high-value bioproduct, with coproduction of a biofuel, thus enhancing biorefinery economics

Relevance to ABY2 Goals

- Addresses, in detail, all three priority areas for ABY2: productivity, process technologies, and cultivation
- High potential for meeting ABY2 2020 productivity goal (3700 gal-BFI/acreyr) and some significant potential for meeting ABY3 2022 productivity goal (5000 gal-BFI/acre-yr)

ALGENDL 5 – Future Work: Key Milestones and Deliverables

Year 1	 >10% biomass increase with strain development
	 >20% biomass increase with operation/engineering
Year 2	 20,000 L PBR operation and harvest
	Dewatering and HTL unit operation and optimization
Year 3	Integrated 20,000 L PBR operation
	 >40% increase biocrude production
	Dewatering and HTL heat/material balance completed
	TEA and LCA targets achieved

5 – Future Work

Program Schedule of Tasks and Subtasks

	2016	;	2017			2018				2019				2020		
	Q4	Q1		Q2	Q	3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1.0 DOE Project Validation							I									
1.1 Pre-validation		Co	/NI	6	20	#1										
1.2 Onsite validation		90		0-0	90	# 1										
1.3 Post validation							l i									
2.0 Strain Development to Improve Prod. & Process.										Go/	No-0	Go #	2			
2.1 Develop LUE screens and selections																
2.2 Conduct screens & directed genetic mods																
2.3 Modify AB1 to improve dewatering																
2.4 Modify Synechocystis to opimize BFI quality & yield																
3.0 Improve Productivity with Operations/Engineering																
3.1 Improve with culture management																
3.2 Enhance PBR optical properties							i									
4.0 Intermediate Scale Process Validation																
4.1 Combine biological, operations, and engineering																
5.0 Iterative Strain and Process Optimization																
5.1 Modify AB1 to further optimize BFI quality/quantity							i									
5.2 Combine beneficial traits in commercial strain																
6.0 Operation and Biomass Harvest at Scale																
6.1 Reconfigure 20,000 L Block for biomass																
6.2 Demonstrate stable operation							i									
6.3 Determine prod. and econ. in open ponds																
7.0 Downstream Processing Optimization																
7.1 Optimize dewatering with comm. strain																
7.2 Evaluate HTL conversion with comm. strain																
7.3 Operate co-product extraction unit																
8.0 Integrated Operation and Commercial Assessment																
8.1 Integrated operation																
8.2 Final report							Ľ									
Pha	se 1				Ph	ase	2					Pł	nase 3			

5 – Future Work: Go/No-Go Decision Points

	Gate Criteria	Verification Process
Go/No-Go #1	DOE validation review complete and Project approved to continue	DOE Validation Team determines if process metrics support technical readiness and submits a report to DOE. Technology Manager and Project Team release remaining scope and funding.
Go/No-Go #2	Improvements in strain, cultivation operations, PBR system design, and HTL efficiency combine to yield >30% increase in biocrude productivity; no LCA or TEA related showstoppers	Project Team delivers to Gatekeepers documentation for higher yielding strain, optimized cultivation/harvest system, operational enhancements, optimized PBR system, and upgraded TEA/LCA analysis consistent with established gate criteria.

Summary

1. <u>Overview:</u> The project provides a plan for meeting all goals associated with FOA-0001471 (ABY2) employing a PBR-based system

ALGEND

- 2. <u>Approach:</u> The work plan addresses all three Priority Areas for ABY2 and builds on experience gained in the deployment of Algenol's DOE-funded biorefinery focused on ethanol production, as well as established working relationships amongst the partners
- 3. <u>Technical Accomplishments/Progress/Results:</u> New Project
- 4. <u>Relevance:</u> *Well-aligned with ABY2 and BETO goals*
- 5. <u>Future work:</u> Work plan has sound scientific footing and can take advantage of existing infrastructure, cultivation experience, and engineering expertise to advance DOE goals for biocrude production

Additional Slides

Responses to Previous Reviewers' Comments

- This is a new project (started in 4Q2016) that has not been reviewed in previous BETO meetings.
- Phase I Validation review (Go/No-Go #1) passed in December 2016.

ALGENDL Publications, Patents, Presentations, Awards, and Commercialization

• This is a new project (started in 4Q2016) and no publications, patents, presentations, awards or commercialization efforts, deriving specifically from this work, are available yet.