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Project Goal. Upgradlng Bloreflnery
Waste to Fungible Products

« Address one of the most challenging issues in biofuel

production: upgrading the lignin-containing biorefinery
residues to fungible bioproducts.

 Develop a viable bioprocess to convert biorefinery waste
to bioplastics at less than $5 dollar/Kg. -- Project Outcome

 Overcome the key challenges for biorefinery cost-
effectiveness and sustainability as laid out by BETO
MYPP; Bring down the biofuel cost toward $3/GGE.

| « BETO Missions:
— Manage biorefinery waste

— Reduce carbon emission by complete biomass usage
T Improve biorefinery economics and sustainability
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Quad Chart Overview

Timeline Barriers
» Project start date: 07/01/2016 e Barriers addressed
* Project end date: 06/30/2019 0 gG Efficient Intermediate
eanup

- 100
* Percent complete: 10% o Ct-J. Process Integration

o Ct-L. Aqueous Phase Utilization

Budget Partners
 Partners
- Total Planned o University of Tennessee, Knoxville/
Costs Funding (FY Oak Ridge National Laboratory
17-End) o Washington State University
DOE $42,367 $2,457,626 o ICMinc.
F“”ded « Commercial Partners and

Project $0.00 $785,071 Relevance

Cost Sh i
OSt Share o ICMinc. to scale up the

technology in 50 Liter reaction
and achieve the on-site
integration with biorefinery.




Project Overview

FOA Topic: Process development and optimization of a single unit
operation for the upgrading of chemically or biologically derived
intermediates to fuels and products.

Project Title:
Upgrading lignin-containing biorefinery waste to bioplastics
Objectives:

This project uniquely addresses BETO’s mission and FOA's goals
through process enablement, development, and optimization for the
bioconversion of lignin-containing biorefinery residues into bioplastics.

(1) Process enablement by screening and engineering microorganisms
to convert biorefinery waste streams to PHA for bioplastics;

(2) Process development by characterizing biorefinery residues,
optimizing pretreatment and lignin fractionation, enhancing
fermentation, and designing the novel bioprocess;

(3) Process integration and optimization by biorefinery on-site scale-up,
_-technoeconomic and life cycle analysis for the lignin-to-PHA up-
“%# Ygrading process.




Management Approach

technology development and commercialization.

Go/No-Go milestones were set at the end of each year and
each of the two budget periods. BP1 ends at 24 months. I

Monthly group teleconferences and semi-annual group
meetings were implemented to evaluate the progresses
against milestones.

Regular teleconferences between the Pl and the program
management are implemented to evaluate progresses,
mitigate risks, and address management iSsues.

Engage industrial partners including ICM inc. for
deliverables relevant to EERE MYPP.

* Integrate TEA and LCA throughout the project to ensure
i <. ithe felevance of the project outcome.

» Defined and measurable milestones were laid out for .+ |



Technical Approach

Target: Titer 8.4g/L, Efficiency 30%

Strain Screening —

Objective 1

| Process broad carbon

I Enabl t source and lignin
namemen utilization

| Objective 2 Pretreatment &

Fractionation

I [P)mc?ss ¢ Optimization —
S LY |ignin processibility

I Objective 3 Process Evaluation

| Process — life cycle analysis

I Optimization K3 technoeconomic

..&'éegl'er-hb analysis

_______ J

Strain Engineering
— systems biology-
guided design for
efficient conversion

Fermentation
Optimization —
process
development

Process Scale-up
— on-site
Integration with
biorefinery




Technical Approach & Accomplishmﬁé}m’?j&i .

Objective 1 Strain Screening — Strain Engineering
I Process broad carbon — systems b_iology-
| Enablement SAES alel gl guided design for
[ utilization efficient conversion
Objective 2 Pretreatment & Fermentation
I Process Fra.cti-ona.tion Optimization —
| Development TSN process
" lignin processibility development
I Objective 3 Process Evaluation Process Scale-up
| Process — life cycle analysis _ on-site

| Optimization & technoeconomic integration with

._&gegre.h.h’p analysis biorefinery




Strain Screening — scv Strain for ngh

Productivity on Biorefinery Waste

Strain screening has identified a

Small Colony Variant (SCV)

pseudomonas strain:

« Aggregates on lignin-containing
Substrates

« Grows to a higher concentration
on biorefinery waste

_* Produces much more PHA on

1% -Tbiﬁrefinery waste

PHA Yield (g/L)
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Strain Screening — Cupriavidus basilensis"é’;;_&_;{“
as an Effective Strain for Lignin Conversion %

Cupriavidus
basilensis B-8 can
convert lignin to
bioplastics at over
300mg/L.
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Discovering a Lignin-Utilization P. putida Strain;’
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Technical Approach& Accomplishment:

Objective 1 Strain Screening — Strain Engineering
I Process broad carbon — systems b_iology-
| Enablement SAES alel gl guided design for
[ utilization efficient conversion
Objective 2 Pretreatment & Fermentation
I Process Fra.cti-ona.tion Optimization —
| Development TSN process
" lignin processibility development
I Objective 3 Process Evaluation Process Scale-up
| Process — life cycle analysis _ on-site

| Optimization & technoeconomic integration with

._&gegre.h.h’p analysis biorefinery




Technical Approach — Strain Engineering
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Overview of Proteomics-based Systems Blolo‘gby,stud)
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Design of Lignin Depolymerization Modu
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Design of Aromatic Compound Catabolism and
PHA Biosythesis Modules to Maximize Carbon FTux*_'
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Multiple Module Integration for Biorefinery
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Strain Screening and Engineering for: _#
Biorefinery Residue Upgrading =~ *

1. Pseudomonas putida strain with strong aromatic
compound and lignin degradation capacity has been
identified.

2. Comparative genomics is an effective approach to
reveal lignin and aromatic compound degradation
mechanisms — coordinative pathways.

3. Systems biology-guided strain engineering is effective
In guiding the design of three functional modules to
enhance the upgrading of biorefinery waste to PHA.

4. The strain screening and engineering can be integrated




Technical Approach et

Strain Screening —

Objective 1
I Process broad carbon
| Enabl t source and lignin
nablemen utilization
Objective 2 Pretreatment &

Optimization —
| Development .

lignin processibility

I Objective 3 Process Evaluation
| Process — life cycle analysis

I Optimization & technoeconomic

&$epfe~h’b analysis

Strain Engineering
— systems biology-
guided design for
efficient conversion

Fermentation
Optimization —
process
development

Process Scale-up
— on-site
integration with
biorefinery




Technical Approach Toward Future W@rk |

Objective 1 Strain Screening — Strain Engin_eering
I Process broad carbon — systems biology-
| Enablement SAES alel gl guided design for
l utilization efficient conversion

Objective 2 Pretreatment & Fer_mentation
| Process Fractionation Optimization —

| Development

Optimization —
lignin processibility

process
development

I Objective 3 Process Evaluation Process Scale-up
| Process — life cycle analysis — on-site
& technoeconomic integration with

| Optimization

&'ﬁegl’emhb

analysis

biorefinery




Aspen Plus Model to Evaluate the Route:

Biorefinery Residue to Biopl

astics
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L T06
W_IE N

DAP &>

N 109

SEEDTRN

HIERARCHY

FER101

Lignin FER103 o4
H101 mM102
SP101
M101
Conditioni Qermentation
123
I
%
cacz o Waste Water to WT 147> Acetate to recy cle
Water vapor discharged
Polyacry laride > REC101
121 < v
Cell debris & Unconv erted lignin & Other sugar solids
>
28
132 = ]
126 - KX -
% - AN 137 <
127 N‘ <— ™ 133 -
" 129 >4 — P105 Ethanol to recy cle
- 31 > o>
= < 136 142
FIL101 - EXT101 ™
M108 DRY101 % 3
GRI101 > w3y ™ — & Waste water
s v MEVP e | >
35 FiL102 —— S 143 Yl Ts1
) 140 = | =
PREL0L Y
- FIL103 145 /AS101 150 a‘
P102 e
Acetate B 134 -
152 ) PHA (Product)
139 = DRY102 {152} (Product
. P103 a
PHA Separation =
Ethanol &> 144 P104




Revenue Potentials for the Biorefinery %, .
Residue to PHA Route T By

Lignin PHA Impact on energy resource distribution
Utilization conversion I
Available lignin for | Potential revenue from
energy generation energy generation
(kg/hr) (MM$/yr)
Case 1l 10% 10% 12,103 18.57
[ Case 2 40% 30% 10,758 17.46 ]
Case 3 60% 40% 9,291 16.26
I Case 4 60% 60% 7,824 15.46

The NREL ethanol plant electricity cost is about 13.71 MMS/yr

23




Techno-Economic Analysis of Up gradmg of

Biorefinery Residues to PHA TR
UNITS CASE 1 CASE 2 CASE 3 CASE 4
Annual MMkg 0.5 5.96 11.9 17.84
production
Total Capital - MM$ 24.2 61.2 86.5 87.3
Cost
Total MM$/yr
Operating 7.0 12.8 16.6 16.7
Cost
Raw MMS/yr 1.1 4.2 6.3 6.3
Material
Utilities MM$/yr 0.12 0.25 0.33 0.35
Unit cost $/kg 23.82 3.51 2.28 1.57
0
Rate of o 10 10 10 10
return
Minimum $ikg 28.49 4.36 2.84 2.06
selling price

Casel: 10% lignin flowrate to PHA process; 10% conversion of lignin to PHA

Case?2: 40% lignin flowrate to PHA process; 30% conversion of lignin to PHA

'*T‘-& ¢ +%*Case3: 60% lignin flowrate to PHA process; 40% conversion of lignin to PHA
: | Case4: 60% lignin flowrate to PHA process; 60% conversion of lignin to PHA




Conclusion for Approach — Future Work:

« Strain screening will be used to identify 1-2 most effective strain for
converting biorefinery residues to bioplastics.

o Systems biology-guided strain engineering will deliver strain with better
lignin depolymerization capacity and more carbon flux from lignin to PHA.
The strain will have a higher conversion rate and more percentage PHA in
cell dry weight.

* Pretreatment and fractionation optimization will be carried out to maximize
both sugar and lignin bioproduct yield from biorefinery.

* Fermentation optimization will be carried out to improve titer and PHA
conversion efficiency for the bioconversion process.

« TEA and LCA will be carried out to evaluate how the advances of
technologies contribute to the cost-effectiveness and sustainability of
biorefinery.

 We will work with commercial partner to scale up the process to 50L
“fsseale.




Future Work

"y
..'."l- "“., [T

We will integrate the outcome from strain ;. g
screening and engineering with the
optimization of pretreatment/fractionation and
fermentation to deliver an efficient process for
upgrading biorefinery waste to PHA. The
process design and research endeavor will be

Strain evaluated and guided by TEA and LCA.
Engineering

Strain
Screening

Process Integration for Process
Biorefinery Residue Evaluation —

Pretreatment & Upgrading to PHA LCA and TEA

Fractionation
I Optimization

Process Scale-up
Fermentation for Biorefinery
Optimization Integration

1: giry )
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Relevance — Direct Relevance to I\/IYPP
and Challenges in Biorefinery

* The project will deliver a bioprocess to convert biorefinery residues to
PHA at less than $5 per kg. The new biorefinery stream will add
significant value to the lignocellulosic biofinery.

* The project will enable the multi-stream integrated biorefinery (MIBR) to
maximize the yield of both carbohydrate-based biofuels and lignin-based
bioproducts, which will turn biorefinery into biomanufacturing facility.

* With the multiple product stream and the maximized yield for both biofuels
and bioproducts, the project well address the MYPP goal to achieve
$3/GGE fuels. The project will improve the overall cost-effectiveness of
biorefinery and reduce the fuel production cost.

« With more complete utilization of biorefinery residues, the project will
address the mission of BETO, the MYPP goals, and the challenges in
biofuel industry by improving biorefinery efficiency and sustainability.

 The research will significantly advance the current state-of-the-art in
biorefinery residue upgrading. The technical breakthrough can be
integrated with different platforms to produce valuable compounds from
waste stream. Certain part of the technologies were licensed and we are
‘# \working with commercial partner for scale up and commercialization.




Relevance — Enabled Multistream
Integrated Biorefinery (MIBR)
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A PCT patent filing has been carried out.
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